
www.ierjournal.org International Engineering Research Journal (IERJ) Volume 2 Issue 2 Page 763-768, 2016, ISSN 2395-1621

© 2015, IERJ All Rights Reserved

Page 1

 ISSN 2395-1621

Android Malware DetectionUsing

Machine Learning Approch

#1
Hemant Chavan,

#2
Abhinay Chaudhari,

#3
Amol Shivpure,

#4
Ankita Ghodke,

#5
Prof. Ganesh Bandal

1Hemantchavan1992@gmail.com

2chaudhariabhinay@gmail.com
3amolshivpure12@gmail.com

4ankitaghodke1994@gmail.com
5ganesh.bandal@raisoni.net

#5

Assistant Professor of Computer Department, Department of Computer GHRCEM

G.H.Raisoni College of Engineering and Management, Pune

ABSTRACT

ARTICLE INFO

In this paper we present Permission as well as String Based Anomaly Detection System

for detecting Meaningful deviation in a mobile application's network behavior. The

main goal of Proposed system is to protect mobile device users and avoid uncertainty of

users. Identification of republished popular applications injected with a malicious code

(i.e., repackaging). More specifically, we attempt to detect a new type of mobile malware

with self-updating capabilities that were recently found on the official Google Android

Marketplace.Android applications are becoming increasingly because android phones

arewidespread and steadily gaining popularity. Unfortunately, such phenomenondraws

attention to malicious application developers so that malicious applicationsare

increasing rapidly. These malicious applications are capable to stealingsensitive and

private user information and to damage the phone hardware as well.Therefore it is

highly essential to identify and detect these malicious applicationswhich is present in

both official Android Market and alternative application markets.

Index Terms- Android Security, Android System, Permission Usage Analysis, Malware

Detection.

Article History

Received :16
th

 April 2016

Received in revised form :

19
th

 April 2016

Accepted : 21
st
 April 2016

Published online :

27
th

 April 2016

I. INTRODUCTION

Now a days Smartphone's become exploring for personal or

business use. There will be an estimated 1.368 Billion of

smartphones shipped globally 2015, growing 14.6% on year,

according to Digitimes Research.This number increased

20% over the last year.Meantime, smartphone platforms

have seen a massive surge in malwares.

 As the official application (or app) market, Google’s

Play store provides a platform of delivering apps for

Android smartphones and mobile devices. There are many

third-party app markets providing similar platforms. App

developers publish their apps on the Google’s play or on the

third-party app markets, where end users download and

install their interested apps on their Android smart phones.

Obviously, how detect and keep the large number of

malware out of the application (or app) markets is an

emerging, crucial, but challenging issue.

II. RELATED WORK

There has been significant work on problem of detecting

malware on mobile devices. Several approaches of monitor

the power usage of applications, and report anomolous

consumption. Others monitor system calls and attempt to

detect which unusual system call patterns. Other approaches

use more traditional comparison with known malwares, or

other heuristics.The more general field of malware detection

is host to the wider range of approaches. In Sahs et al.[1]

traditional static analysis of approaches such as, which focus

on comparing programs to known malware based on the

program code, looking for the signatures or using other

heuristics. Other approaches are focus on using machine

learning and data mining approaches for malware detection.

Train a neural network to detect boot sector viruses, based

on byte string trigrams. Compare three machine learning

algorithms trained on three features: DLL and system calls

made by the program, strings found in the program binary,

and a raw hexadecimal representation of the binary.

www.ierjournal.org International Engineering Research Journal (IERJ) Volume 2 Issue 2 Page 763-768, 2016, ISSN 2395-1621

© 2015, IERJ All Rights Reserved

Page 2

 In Cen et al. [3] the paradigm for program

distribution on these mobiledevices also differs from that of

the traditional PCs. Manydevelopers are releasing

applications to one or a few centralapplication markets.

While there are third party applicationstores, currently all

popular mobile device platforms havecentral application

stores as the primary mechanism of

application distribution.

 Crowdroid is a machine learning-based framework

that recognizes Trojan-like malware on Android

smartphones, by analyzing the number of times each system

call has been issused by an application during the execution

of an action that requires user interaction. A genuine

application differs from its trojanized version, since it issues

different types and a different number of system calls.

Crowdroid builds a vector of m features (the Android

system calls). Another IDS that relies on machine learning

techniques is Andromaly which monitors both the

smartphone and user’s behaviors by observing several

parameters, spanning from sensors activities to CPU usage.

88 features are used to describe these behaviors; the features

are then pre-processed by feature selection algorithms. The

authors developed four malicious applications to evaluate

the ability to detect anomalies. MADAM: a Multi-Level

Anomaly Detector for Android Malware uses 13 features to

detect android malware for both kernal level and user level.

MADAM has been tested on real malware found in the wild

and uses a global-monitoring approach that is able to detect

malware contained in unknown applications, i.e. not

previously classified Aung et al. [4].

III. MALWARE CHARACTERIZATION

In this section, we present a systematic characterization of

existing Android malware, ranging from their installation,

activation, to the carried malicious payloads.

A. Malware Installation

By manually analyzing malware samples in our

collection, we categorize existing ways Android malware

use to install onto user phones and generalize them into

three main social engineering-based techniques, i.e.,

repackaging, update attack, and drive-by download. These

techniques are not mutually exclusive as different variants

of the same type may use different techniques to entice

users for downloading.

1) Repackaging

Repackaging is one of the most common techniques

malware authors use to piggyback malicious payloads into

popular applications (or simply apps). In essence, malware

authors may locate and download popular apps, disassemble

them, enclose malicious payloads, and then re-assemble and

submit the new apps to official and/or alternative Android

Markets. Users could be vulnerable by being enticed to

download and install these infected apps. To quantify the

use of repackaging technique among our collection, we take

the following approach: if a sample shares the same package

name with an app in the official Android Market, we then

download the official app (if free) and manually compare

the difference, which typically contains the malicious

payload added by malware authors. If the original app is not

available, we choose to disassemble the malware sample

and manually determine whether the malicious payload is a

natural part of the main functionality of the host app. If not,

it is considered as repackaged app.

2) Update Attack

The first technique typically piggybacks the entire malicious

payloads into host apps, which could potentially expose

their presence. The second technique makes it difficult for

detection. Specifically, it may still repackage popular apps.

But instead of enclosing the payload as a whole, it only

includes an update component that will fetch or download

the malicious payloads at runtime. As a result, a static

scanning of host apps may fail to capture the malicious

payloads. In our dataset, there are four malware families,

i.e., BaseBridge, DroidKungFuUpdate, AnserverBot, and

Plankton, that adopt this attack.

IV. PROPOSED SYSTEM

A system architecture or systems architecture is the

conceptual model that defines the structure, behavior, and

more views of a system. An architecture description is a

formal description and representation of a system, organized

in a way that supports reasoning about the structures of the

system.

The overall architecture diagram is given below. Our system

begins with the phase of downloading Android applications.

Both genuine and malware applications need to be

downloaded to train and test our system. Malware Android

applications cannot be easily downloaded from the internet.

We became a member in virusshare.com- a malware

repository used for research and analysis purposes. After we

have created a Repository of Android applications, we need

to extract the AndroidManifest.xml and classes.dex _les

from each of the .apk package.

Both the _les will be in encrypted form. In order to

decrypt the manifest xml _le, we use AXMLPrinter2.jar tool.

To decompile the dex _le (compiled java source code), we

use dedexer.jar tool. Both the tools are automated and

executed using Windows PowerShell. Since we need to

perform the decrypting of xml _les and decompiling of dex

_les for all the .apk packages we have downloaded, it is

literally impossible to separately use the tool for every

application.

www.ierjournal.org International Engineering Research Journal (IERJ) Volume 2 Issue 2 Page 763-768, 2016, ISSN 2395-1621

© 2015, IERJ All Rights Reserved

Page 3

Fig. Architecture Diagram

V. ALGORITHM

In this section we first use J48 algorithm for generate a

decision tree and Second algorithm use Naïve Bayes for

finding the Probability of the Dataset.

1) J48 (OR) C4.5 :

C4.5 is an algorithm used to generate a decision tree

developed by Ross Quinlan. C4.5 is an extension of

Quinlan's earlier ID3 algorithm. The decision trees

generated by C4.5 can be used for classification, and for this

reason, C4.5 is often referred to as a statistical classifier.

2) NAÏVE BAYES :

In machine learning, naive Bayes classifiers are a family of

simple probabilistic classifiers based on applying Bayes'

theorem with strong (naive) independence assumptions

between the features.

Naive Bayes has been studied extensively since the

1950s. It was introduced under a different name into the text

retrieval community in the early 1960s, and remains a

popular (baseline) method for text categorization, the

problem of judging documents as belonging to one category

or the other (such as spam or legitimate, sports or politics,

etc.) with word frequencies as the features. With appropriate

pre-processing, it is competitive in this domain with more

advanced methods including support vector machines. It

also finds application in automatic medical diagnosis.Naive

Bayes classifiers are highly scalable, requiring a number of

parameters linear in the number of variables

(features/predictors) in a learning problem. Maximum-

likelihood training can be done by evaluating a closed-form

expression, which takes linear time, rather than by

expensive iterative approximation as used for many other

types of classifiers.

DATAFLOW DIAGRAM

 LEVEL 0:

LEVEL 1:

VI. RESULTS

1. A

fter running obtained the GUI of project.

www.ierjournal.org International Engineering Research Journal (IERJ) Volume 2 Issue 2 Page 763-768, 2016, ISSN 2395-1621

© 2015, IERJ All Rights Reserved

Page 4

2. B

rowsing the .apk from directory.

3. W

when .apk file successful browse.

4. W

when unzip .apk file successfully.

5. R

Reading the AndroidManifest.xml file.

6. Read the classes.dex files

7. a

Parsing the AndroidManifest.xml file and

generated ARFFOnPermission file.

8. P

Parsing the classes.dex files and generated

ARFFOnStrings file.

www.ierjournal.org International Engineering Research Journal (IERJ) Volume 2 Issue 2 Page 763-768, 2016, ISSN 2395-1621

© 2015, IERJ All Rights Reserved

Page 5

9. A

pplying the algorithms.

10. After apply algorithms result get analysis and

collected.

11.

11. Final Result

VII. CONCLUSION

We had survey on framework for classifying Android

applications whether they are malware or normal

applications. To generate the models, we have extracted

several permission features from several downloaded

applications from android markets.

ACKNOWLEDGMENT

We would like to thank our guide and various

technological experts who researches about malware

detection and improve the result by implementing new

methods. We would also like to thank Google for providing

details on different issues on malware detection and about

other related techniques.

REFERENCES

[1] “A Machine Learning Approach to Android Malware

Detection”, Justin Sahs and Latifur Khan{2012}.

[2] “Exploring Permissions-induced Risk in Android

Applications for Malicious Application Detection", Wei

Wang, Xing Wang, Dawei Feng, Jiqiang Liu, Zhen Han,

Xiangliang Zhang {2014}.

[3] “A Probabilistic Discriminative Model for Android

Malware Detection with Decompiled Source Code”, Lei

Cen, Christoher S. Gates, Luo Si, and Ninghui Li. - 2015)

[4]” Permission-Based Android Malware Detection”, Zarni

Aung, Win Zaw – 2013

[5] Dong-uk Kim, Jeongtae Kim, Sehun Kim, "Malicious

Application Detection Framework using Feature Extraction

Tool on Android Market".

[6] BorjaSanz, Igor Santos, Carlos Laorden, XabierUgarte-

Pedrero and Pablo Garcia Bringas, “MADS: Malicious

Android Applications Detection through String Analysis".

www.ierjournal.org International Engineering Research Journal (IERJ) Volume 2 Issue 2 Page 763-768, 2016, ISSN 2395-1621

© 2015, IERJ All Rights Reserved

Page 6

[7]“Mobile malware detection through analysis of

deviations in application network behaviour”, A. Shabtai, L.

Tenenboim-Chekina, D. Mimran, L. Rokach, B. Shapira,Y.

Elovici.

[8] “DREBIN: Effective and Explainable Detection

of Android Malware in Your Pocket” ,Daniel Arp, Michael

Spreitzenbarth, Malte H¨ubner, Hugo Gascon, Konrad

Rieck.

[9] “Dissecting Android Malware: Characterization and

Evolution”, Yajin Zhou, Xuxian Jiang.

[10] “Permlyzer: Analyzing Permission Usage

in Android Applications”, Wei Xu, Fangfang Zhang, and

Sencun Zhu.

