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ABSTRACT 

 

ARTICLE INFO 

In this paper we present Permission as well as String Based Anomaly Detection System 

for detecting Meaningful deviation in a mobile application's network behavior. The 

main goal of Proposed system is to protect mobile device users and avoid uncertainty of 

users. Identification of republished popular applications injected with a malicious code 

(i.e., repackaging). More specifically, we attempt to detect a new type of mobile malware 

with self-updating capabilities that were recently found on the official Google Android 

Marketplace.Android applications are becoming increasingly because android phones 

arewidespread and steadily gaining popularity. Unfortunately, such phenomenondraws 

attention to malicious application developers so that malicious applicationsare 

increasing rapidly. These malicious applications are capable to stealingsensitive and 

private user information and to damage the phone hardware as well.Therefore it is 

highly essential to identify and detect these malicious applicationswhich is present in 

both official Android Market and alternative application markets. 

 

Index Terms- Android Security, Android System, Permission       Usage Analysis, Malware 

Detection. 
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I. INTRODUCTION 

 

Now a days Smartphone's become exploring for personal or 

business use. There will be an estimated 1.368 Billion of 

smartphones shipped globally 2015, growing 14.6% on year, 

according to Digitimes Research.This number increased 

20% over the last year.Meantime, smartphone platforms 

have seen a massive surge in malwares. 

      As the official application (or app) market, Google’s 

Play store provides a platform of delivering apps for 

Android smartphones and mobile devices. There are many 

third-party app markets providing similar platforms. App 

developers publish their apps on the Google’s play or on the 

third-party app markets, where end users download and 

install their interested apps on their Android smart phones. 

Obviously, how detect and keep the large number of 

malware out of the application (or app) markets is an 

emerging, crucial, but challenging issue. 

  

II. RELATED WORK 

There has been significant work on problem of detecting 

malware on mobile devices. Several approaches of monitor 

the power usage of applications, and report anomolous 

consumption. Others monitor system calls and attempt to 

detect which unusual system call patterns. Other approaches 

use more traditional comparison with known malwares, or 

other heuristics.The more general field of malware detection 

is host to the wider range of approaches. In Sahs et al.[1] 

traditional static analysis of approaches such as, which focus 

on comparing programs to known malware based on the 

program code, looking for the signatures or using other 

heuristics. Other approaches are focus on using machine 

learning and data mining approaches for malware detection. 

Train a neural network to detect boot sector viruses, based 

on byte string trigrams. Compare three machine learning 

algorithms trained on three features: DLL and system calls 

made by the program, strings found in the program binary, 

and a raw hexadecimal representation of the binary. 
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 In Cen et al. [3] the paradigm for program 

distribution on these mobiledevices also differs from that of 

the traditional PCs. Manydevelopers are releasing 

applications to one or a few centralapplication markets. 

While there are third party applicationstores, currently all 

popular mobile device platforms havecentral application 

stores as the primary mechanism of 

application distribution. 

 Crowdroid is a machine learning-based framework 

that recognizes Trojan-like malware on Android 

smartphones, by analyzing the number of times each system 

call has been issused by an application during the execution 

of an action that requires user interaction. A genuine 

application differs from its trojanized version, since it issues 

different types and a different number of system calls. 

Crowdroid builds a vector of m features (the Android 

system calls). Another IDS that relies on machine learning 

techniques is Andromaly which monitors both the 

smartphone and user’s behaviors by observing several 

parameters, spanning from sensors activities to CPU usage. 

88 features are used to describe these behaviors; the features 

are then pre-processed by feature selection algorithms. The 

authors developed four malicious applications to evaluate 

the ability to detect anomalies. MADAM: a Multi-Level 

Anomaly Detector for Android Malware uses 13 features to 

detect android malware for both kernal level and user level. 

MADAM has been tested on real malware found in the wild 

and uses a global-monitoring approach that is able to detect 

malware contained in unknown applications, i.e. not 

previously classified Aung et al. [4]. 
 

III. MALWARE CHARACTERIZATION 

In this section, we present a systematic characterization of 

existing Android malware, ranging from their installation, 

activation, to the carried malicious payloads. 

 

A. Malware Installation 

 

By manually analyzing malware samples in our 

collection, we categorize existing ways Android malware 

use to install onto user phones and generalize them into 

three main social engineering-based techniques, i.e., 

repackaging, update attack, and drive-by download. These 

techniques are not mutually exclusive as different variants 

of the same type may use different techniques to entice 

users for downloading. 

 
1) Repackaging  

 

Repackaging is one of the most common techniques 

malware authors use to piggyback malicious payloads into 

popular applications (or simply apps). In essence, malware 

authors may locate and download popular apps, disassemble 

them, enclose malicious payloads, and then re-assemble and 

submit the new apps to official and/or alternative Android 

Markets. Users could be vulnerable by being enticed to 

download and install these infected apps. To quantify the 

use of repackaging technique among our collection, we take 

the following approach: if a sample shares the same package 

name with an app in the official Android Market, we then 

download the official app (if free) and manually compare 

the difference, which typically contains the malicious 

payload added by malware authors. If the original app is not 

available, we choose to disassemble the malware sample 

and manually determine whether the malicious payload is a 

natural part of the main functionality of the host app. If not, 

it is considered as repackaged app. 

 

2) Update Attack 

 

The first technique typically piggybacks the entire malicious 

payloads into host apps, which could potentially expose 

their presence. The second technique makes it difficult for 

detection. Specifically, it may still repackage popular apps. 

But instead of enclosing the payload as a whole, it only 

includes an update component that will fetch or download 

the malicious payloads at runtime. As a result, a static 

scanning of host apps may fail to capture the malicious 

payloads. In our dataset, there are four malware families, 

i.e., BaseBridge, DroidKungFuUpdate, AnserverBot, and 

Plankton, that adopt this attack. 

 

IV. PROPOSED SYSTEM 

 

A system architecture or systems architecture is the 

conceptual model that defines the structure, behavior, and 

more views of a system. An architecture description is a 

formal description and representation of a system, organized 

in a way that supports reasoning about the structures of the 

system. 

 

The overall architecture diagram is given below. Our system 

begins with the phase of downloading Android applications. 

Both genuine and malware applications need to be 

downloaded to train and test our system. Malware Android 

applications cannot be easily downloaded from the internet. 

We became a member in virusshare.com- a malware 

repository used for research and analysis purposes. After we 

have created a  Repository of Android applications, we need 

to extract the AndroidManifest.xml and classes.dex _les 

from each of the .apk package. 

 

Both the _les will be in encrypted form. In order to 

decrypt the manifest xml _le, we use AXMLPrinter2.jar tool. 

To decompile the dex _le (compiled java source code), we 

use dedexer.jar  tool. Both the tools are automated and 

executed using Windows PowerShell. Since we need to 

perform the decrypting of xml _les and decompiling of dex 

_les for all the .apk packages we have downloaded, it is 

literally impossible to separately use the tool for every 

application. 
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Fig. Architecture Diagram 

 

 

V. ALGORITHM 

 
In this section we first use J48 algorithm for generate a 

decision tree and Second algorithm use Naïve Bayes for 

finding the Probability of the Dataset. 

 

1) J48 (OR) C4.5 :  
 

C4.5 is an algorithm used to generate a decision tree 

developed by Ross Quinlan. C4.5 is an extension of 

Quinlan's earlier ID3 algorithm. The decision trees 

generated by C4.5 can be used for classification, and for this 

reason, C4.5  is often referred to as a statistical classifier. 

 

2) NAÏVE BAYES :  
 

In machine learning, naive Bayes classifiers are a family of 

simple probabilistic classifiers based on applying Bayes' 

theorem with strong (naive) independence assumptions 

between the features. 

Naive Bayes has been studied extensively since the 

1950s. It was introduced under a different name into the text 

retrieval community in the early 1960s, and remains a 

popular (baseline) method for text categorization, the 

problem of judging documents as belonging to one category 

or the other (such as spam or legitimate, sports or politics, 

etc.) with word frequencies as the features. With appropriate 

pre-processing, it is competitive in this domain with more 

advanced methods including support vector machines. It 

also finds application in automatic medical diagnosis.Naive 

Bayes classifiers are highly scalable, requiring a number of 

parameters linear in the number of variables 

(features/predictors) in a learning problem. Maximum-

likelihood training can be done by evaluating a closed-form 

expression, which takes linear time, rather than by 

expensive iterative approximation as used for many other 

types of classifiers. 

 

DATAFLOW DIAGRAM 

        LEVEL 0: 

 
 
LEVEL 1: 

 

 
 

 

 

VI. RESULTS 

1. A

fter running obtained the GUI of project. 
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2. B

rowsing the .apk from directory. 

 
 

 

3. W

when .apk file successful browse. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. W

when unzip .apk file successfully. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. R

Reading the AndroidManifest.xml file. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Read the classes.dex files 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7. a

Parsing the AndroidManifest.xml file and 

generated ARFFOnPermission file. 

 

 
 

 

 

8. P

Parsing the classes.dex files and generated 

ARFFOnStrings file. 
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9. A

pplying the algorithms. 

 
 

10. After apply algorithms result get analysis and 

collected. 

 

 

 

 

 

 

 

 

 

 

 

 

11. 

 

 

 

 

 

 

 

 

 

 

 

11. Final Result 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VII. CONCLUSION 

 

We had survey on framework for classifying Android 

applications whether they are malware or normal 

applications. To generate the models, we have extracted 

several permission features from several downloaded 

applications from android markets. 
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