
www.ierjournal.org International Engineering Research Journal (IERJ) Volume 2 Issue 2 Page 463-466, 2016, ISSN 2395-1621

© 2015, IERJ All Rights Reserved Page 1

 ISSN 2395-1621

Big Data Processing Using Hadoop

#1
Krutika Bhalekar,

#2
Shital Birajdar,

#3
Pritam More,

#4
Arati Pawar,

#5
Prof. R.A.Kulkarni

1krutikabhalekar9@gmail.com
2birajdar.shital15@gmail.com
3pritamsmore555@gmail.com

4arativpawar94@gmail.com

ABSTRACT

ARTICLE INFO

Scheduling with Size-based recognized as an effective approach to guarantee fairness,

priorities, parsing, job queuing and near-optimal system response times. We present a

scheduler introducing this technique to a real, multi-server, complex and widely used

system such as Hadoop. Scheduling requires a priori job size information, validation,

processing, and retrievals. Scheduling builds such knowledge by estimating it on-line

during job execution. Our scheduler, which is based on realistic workloads generated

via a standard benchmarking suite, pinpoint at a significant decrease in system response

times with respect to the widely used Hadoop scheduler, and show that our Scheduler is

largely tolerant to job size estimation errors with hadoop as database.

Keywords: Big Data Problem, Hadoop cluster, Hadoop Distributed File System(HDFS),

Parallel Processing, Map Reduce, Hadoop Components.

Article History

Received 30th March 2016

Received in revised form :

1
st
 March 2016

Accepted : 2nd April 2016

Published online :

4th April 2016

I. INTRODUCTION

The large-scale data analytics, fostered by parallel

processing frameworks such as Map Reduce has created the

need to manage the resources of compute clusters that

operate in a shared, multi-tenant environment. Within the

same company, many users share the same cluster because

this avoids redundancy and may represent enormous cost

savings.

Initially designed for few and very large batch processing

jobs, data-intensive scalable computing frameworks such as

Map Reduce are nowadays used by many companies for

production, recurrent and even experimental data analysis

jobs. This heterogeneity is substantiated by recent studies

that analyze a variety of production-level workloads. An

important fact that emerges from previous works is that

there exists a stringent need for short system response times.

Data exploration, preliminary analysis and algorithm tuning

on small datasets often involve interactivity, in the sense

that there is a human in the loop seeking answers with a

trial-and-error process. In addition, workflow schedulers It

has possible to minimize starvation by efficient utilization

of maximum resources in the hadoop.

II. LITERATURE REVIEW

A. J. Dean and S. Ghemawat, “MapReduce: Simplified

data processing on large clusters,” in Proc. of USENIX

OSDI, 2004

Essentially, size-based scheduling adopts the idea of

giving priority to small jobs: as such, they will not be

slowed down by large ones. The Shortest Remaining

Processing Time (SRPT) policy, which prioritizes jobs that

need the least amount of work to complete, is the one that

minimizes the mean sojourn time (or response time), that is

the time that passes between a job submission and its

completion Policies like SRPT may however incur in

starvation: if smaller jobs are continuously submitted, larger

ones may never get scheduled. In order to avoid starvation,

a common solution is to perform job aging: virtually

decreasing the size of jobs waiting in the queue, in order to

make sure that they will be eventually scheduled.

B. K. Ren et al., “Hadoop’s adolescence: An analysis of

Hadoop usage in scientific workloads,” in Proc. of VLDB,

2013.

Compares Processing State (PS) with the SRPT

scheduling discipline with an illustrative example: in this

case, two small jobs – j2 and j3 – are submitted while a

large job j1 is running. While in PS the three jobs run

(slowly) in parallel, in a size-based discipline j1 is

preempted: the result is that j2 and j3 complete earlier. It is

www.ierjournal.org International Engineering Research Journal (IERJ) Volume 2 Issue 2 Page 463-466, 2016, ISSN 2395-1621

© 2015, IERJ All Rights Reserved Page 2

worth noting that, in this case, the completion time of j1

does not suffer from preemption: somewhat counter to

intuition, this is often the case for SRPT-based scheduling.

job size distribution is very skewed, ranging from few

seconds to several hours. These sizes are difficult to obtain a

priori, even though various recent works tackle the task of

estimating Map Reduce job sizes ; in addition, evaluate the

impact of estimation errors on size based scheduling for

synthetic traces. for example, by overestimating the size of a

job – is, in the long run, “corrected” by decreasing job size

through aging. We verify our claim by implementing a

common aging policy, where the remaining processing time

is decreased by the amount of work performed in a virtual

PS scheduler. This technique, which we label Shortest

Remaining Virtual Time (SRVT), results (in the absence of

estimation errors) in scheduling jobs in series, following the

order in which they would complete with the virtual PS.

C. Y. Chen, S. Alspaugh, and R. Katz, “Interactive query

processing in big data systems: A cross-industry study of

MapReduce workloads,” in Proc. of VLDB, 2012.

Hadoop is a popular open source implementation of the

MapReduce programming model for cloud computing.

However, it faces a number of issues to achieve the best

performance from the underlying systems. These include a

serialization barrier that delays the reduce phase, repetitive

merges, and disk accesses, and the lack of portability to

different interconnects. To keep up with the increasing

volume of data sets, Hadoop also requires efficient I/O

capability from the underlying computer systems to process

and analyze data. We describe Hadoop-A, an acceleration

framework that optimizes Hadoop with plug-in components

for fast data movement, overcoming the existing limitations.

A novel network-levitated merge algorithm is introduced to

merge data without repetition and disk access. In addition, a

full pipeline is designed to overlap the shuffle, merge, and

reduce phases. Our experimental results show that Hadoop-

A significantly speeds up data movement in MapReduce

and doubles the throughput of Hadoop. In addition, Hadoop-

A significantly reduces disk accesses caused by intermediate

data.

III. RELATED WORK

Big data is an unrolling concept which defines the

typical large amount of unstructured, semi-structured and

structured data. Big data doesn’t specify the derived data

when speaking about the Zeta bytes, petabytes and

Exabyte’ssize of data.

Nowadays Big data is expanding around us every single

minute.Its increasing factor is the use of internet processand

social media generates it. Big data comes from multi

sources at an alarming volume, variety and velocity [1].

Big data plays important role in academics as well as

industrial sources where the data generation ratio is at the

peak. Relational database cannot be use always because it

has certain limits so data scientist developed the concept of

big data which can be used in efficient manner to accept

challenges of bulk data storage.

Mike Guiltier, Forrester Analyst, proposes a definition

that attempts to be pragmatic and actionable for IT

professionals: “Big Data is the frontier of a firm’s ability to

store, process, and access (SPA) all the data it needs to

operate effectively, make decisions, reduce risks, and serve

customers” (Guiltier, December 2012).3V’S of Big Data.

1.Velocity:-Analysis of the Batch process, Real Time

process, datastreaming, when one takes chunks of data, it

submits the job then there may be certain delay from the

server.

[1][2]

2. Volume:-The size of data files is increasing with high

ratio. The data size .The storage area is also increased from

megabytes to Giga bytes, Zeta Bytes, petabytes and

exabytes.Eg.Facebook generates around 500Tb of Data

every single day.

3. Variety:-In the era of internet the variety of data is

changing day by day. It follows with structured data like

tables and unstructured like videos, xml, audio etc.

Fig. 1.Big Data Issues

Differentiate Between Big Data and DBMS.

1. Parallel database are actively querying the large data

sets.

2. DBMS supports only structured data where as Big

Data supports structured, semi-structured and unstructured

data.

3. Parallel database are relational paradigm of rows and

columns.

Pillars of Big Data

1. Text: The nature of text with all types of structures,

unstructured and semi-structured.

2. Tables: Table form-rows and columns.

3. Graphs: Degree of separation, subjectpredicates,

objectprediction, semantic discovery. [6]

Hadoop

Hadoop is a framework which is open-source for

processing and storing big data in a distributed way on large

clusters. It processes two tasks: large storage of data and

processes faster with data.

Framework: - It is to develop and to run software

applications provides– programs, tool sets, connections,

etc.[7]

www.ierjournal.org International Engineering Research Journal (IERJ) Volume 2 Issue 2 Page 463-466, 2016, ISSN 2395-1621

© 2015, IERJ All Rights Reserved Page 3

Open-source software:-It is downloaded and can be

used to develop the commercial software. Its broad [7] and

open network can be easily, managed by the developers.

Distributed Form: - Data is stored on multiple

computers and divided in to equal chunks on the parallel

connected nodes.

Large storage. The Hadoop framework storeslarge

amount of data by dividing into separate blocks and stored

on clusters.

Hadoop includes:-

1. Hadoop Distributed File System (HDFS):-It manages

the large amount of data that is stored in distributed fashion.

2. Map Reduce:-a framework and a programming model

for distributed processing [6] [7] on parallel clusters.

HADOOP STRUCTURE

1. Hadoop Distributed File System(HDFS) Structure.

The HDFS is a distributed file system developed to

execute on commodity hardware.The feature of HDFS is

fault-tolerance and to be deployed on low-cost hardware.

HDFS provides great access to data and is suitable for

applications that have large data sets. [5].

The distribution of files is divided into chunks of 64MB

size.

The HFDS architecture contains a unit Name Node,

multiple Data Nodes;it can also be stated as master slave

like architecture. Name Node manages the mapping of file

system namespace and regulates access to the block of files.

Data Nodes are responsible for the process of read and write

from the clients. It also performs operations like creation of

blocks and deletion of blocks. [hadoop.apache]

 Fig. 2.Hadoop Architecture.

Map reduce

• Map Reduce is a programming model and software

framework first developed by Google (Google’s Map

Reduce paper submitted in 2004). Intended to facilitate and

simplify the processing of vast amounts of data in parallel

on large clusters of commodity hardware in a reliable, fault-

tolerant manner, Petabytes of data, Thousands of nodes.

Computational processing occurs on both: ▫ Unstructured

data:file system ▫ Structured data:database. Underlying

runtime system automatically parallelizes the computation

across large-scale clusters of machines [4]

Hadoop Scheduling:

Hadoop implements the schedulers where resources are

assigning to the jobs. Traditional scheduling gives us the

scenario that all algorithms are not same and might not be as

effective and dependent completely.We have to study

various schedulers available in Hadoopand how relevant

they are as compared to traditional schedulers in terms of

performance, throughputs, time consuming etc. First in First

out (FIFO) scheduler is a default scheduler which considers

e order for submission of the jobs to get executed.

I. FIFOScheduler.

FIFO is traditional default scheduler which performs

with the use ofqueue. Job is divided into several tasks and

then loads to free slots of the queue on the task tracker. In

filo the job have to wait for execution due to acquisition of

clusters take place this leads to wait for other jobs for their

turn. Shared clusters have ability for offering resources to

users.

II. Fair Scheduler.

Fair scheduler groups jobs into “pools” and it allots each

pool a guaranteed minimum share withsegment more

capacity equally between pools. Facebook first develop the

concept of fair scheduler to manage the access to their

Hadoop and get the subsequent relation with the Hadoop

environment. Poolshave minimum mapping slots

andminimum reduced slots. The Fair Scheduler supports

Preemption, so if a pool has not received its fair share

for acertain period of time, then the scheduler will kill tasks

inpools running over capacity in order to give the slots to

the pool running under capacity [8].

III. Capacity Scheduler.

Capacity scheduler organizes jobs into queues. It shares

as percent of cluster. FIFO scheduling within each queue

and it supports preemption. Yahoo developed the capacity

scheduleraddresses a usage scenario where the number of

users islarge, and there is a need to ensure a fair allocation

of computation resources amongst users.

[3][6]When a Task Tracker slot becomes free, the queue

with thelowest load is chosen, from which the oldest

remaining jobis chosen. A task is then scheduled from that

job.

IV. CONCLUSION

Our work was motivated by the realization that MapReduce

has evolved to the point where shared clusters are used for a

wide range of workloads, which include a non-negligible

www.ierjournal.org International Engineering Research Journal (IERJ) Volume 2 Issue 2 Page 463-466, 2016, ISSN 2395-1621

© 2015, IERJ All Rights Reserved Page 4

fraction of interactive data processing tasks. As a

consequence, we have witnessed the raise of deployment

best practices in which long sojourn times – due to a fair

sharing of resources among competing jobs – were

compensated by over dimensioned Hadoop clusters. In

addition, we remarked that efficient cluster utilization could

be approximated through a tedious manual exercise,

involving the creation of static resource pools to

accommodate workload diversity and an important tuning

effort. To overcome such limitations, in this work we set off

to study the benefits of a new scheduling discipline that

targets at the same time short sojourn times and fairness

among jobs.

We thus proposed a size-based approach to scheduling

jobs in Hadoop, which we called HFSP. Our work brought

up several challenges: evaluating job size on-line without

wasting resources, avoiding job starvation both on small and

large jobs, and guaranteeing short sojourn time despite

estimation errors were the most noteworthy. We solved

these problems in the context of a multi-server system using

virtual time and aging, that is built to be tolerant to failures,

scale-out upgrades, and supports the composite job structure

of Map Reduce.

The system implementation is on the hadoop version

1.2.1 which is a basic version of hadoop.The system can be

made Scalable by using the hadoop version 2.X where some

of the drawbacks can be overcome in 2.X

REFRENCES

 [1] J. Dean and S. Ghemawat, “MapReduce:

Simplified data processing on large clusters,” in Proc. of

USENIX OSDI, 2004.

[2] Y. Chen, S. Alspaugh, and R. Katz, “Interactive

query processing in big data systems: A cross-industry study

of MapReduce workloads,” in Proc. of VLDB, 2012.

[3] K. Ren et al., “Hadoop’s adolescence: An

analysis of Hadoop usage in scientific workloads,” in Proc.

of VLDB, 2013.

[4] Apache, “Oozie Workflow Scheduler,”

http://oozie.apache.org/.

[5] “Hadoop: Open source implementation of

MapReduce,” http://hadoop.apache.org/.

[6] E. Friedman and S. Henderson, “Fairness and

efficiency in web server

protocols,” in Proc. of ACM SIGMETRICS, 2003.

[7] L. E. Schrage and L. W. Miller, “The queue

m/g/1 with the shortestremaining processing time

discipline,” Operations Research, vol. 14,no. 4, 1966.

http://oozie.apache.org/

