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ABSTRACT 

 

ARTICLE INFO 

Scheduling with Size-based recognized as an effective approach to guarantee fairness, 

priorities, parsing, job queuing and near-optimal system response times. We present a 

scheduler introducing this technique to a real, multi-server, complex and widely used 

system such as Hadoop.  Scheduling requires a priori job size information, validation, 

processing, and retrievals. Scheduling builds such knowledge by estimating it on-line 

during job execution. Our scheduler, which is based on realistic workloads generated 

via a standard benchmarking suite, pinpoint at a significant decrease in system response 

times with respect to the  widely used Hadoop scheduler, and show that our Scheduler is  

largely tolerant to job size estimation errors with hadoop as database. 
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I. INTRODUCTION 

 

The large-scale data analytics, fostered by parallel 

processing frameworks such as Map Reduce has created the 

need to manage the resources of compute clusters that 

operate in a shared, multi-tenant environment. Within the 

same company, many users share the same cluster because 

this avoids redundancy and may represent enormous cost 

savings.  

Initially designed for few and very large batch processing 

jobs, data-intensive scalable computing frameworks such as 

Map Reduce are nowadays used by many companies for 

production, recurrent and even experimental data analysis 

jobs. This heterogeneity is substantiated by recent studies 

that analyze a variety of production-level workloads. An 

important fact that emerges from previous works is that 

there exists a stringent need for short system response times. 

Data exploration, preliminary analysis and algorithm tuning 

on small datasets often involve interactivity, in the sense 

that there is a human in the loop seeking answers with a 

trial-and-error process. In addition, workflow schedulers It 

has possible to minimize starvation by efficient utilization 

of maximum resources in the hadoop. 

 

 

 

II. LITERATURE REVIEW 

 

A.  J. Dean and S. Ghemawat, “MapReduce: Simplified 

data processing on large clusters,” in Proc. of USENIX 

OSDI, 2004 

Essentially, size-based scheduling adopts the idea of 

giving priority to small jobs: as such, they will not be 

slowed down by large ones. The Shortest Remaining 

Processing Time (SRPT) policy, which prioritizes jobs that 

need the least amount of work to complete, is the one that 

minimizes the mean sojourn time (or response time), that is 

the time that passes between a job submission and its 

completion Policies like SRPT may however incur in 

starvation: if smaller jobs are continuously submitted, larger 

ones may never get scheduled. In order to avoid starvation, 

a common solution is to perform job aging: virtually 

decreasing the size of jobs waiting in the queue, in order to 

make sure that they will be eventually scheduled. 

B.  K. Ren et al., “Hadoop’s adolescence: An analysis of 

Hadoop usage in scientific workloads,” in Proc. of VLDB, 

2013. 

Compares Processing State (PS) with the SRPT 

scheduling discipline with an illustrative example: in this 

case, two small jobs – j2 and j3 – are submitted while a 

large job j1 is running. While in PS the three jobs run 

(slowly) in parallel, in a size-based discipline j1 is 

preempted: the result is that j2 and j3 complete earlier. It is 



www.ierjournal.org                        International Engineering Research Journal (IERJ) Volume 2 Issue 2 Page 463-466, 2016, ISSN 2395-1621

  

 
© 2015, IERJ All Rights Reserved  Page 2 

 

worth noting that, in this case, the completion time of j1 

does not suffer from preemption: somewhat counter to 

intuition, this is often the case for SRPT-based scheduling. 

job size distribution is very skewed, ranging from few 

seconds to several hours. These sizes are difficult to obtain a 

priori, even though various recent works tackle the task of 

estimating Map Reduce job sizes ; in addition, evaluate the 

impact of estimation errors on size based scheduling for 

synthetic traces. for example, by overestimating the size of a 

job – is, in the long run, “corrected” by decreasing job size 

through aging. We verify our claim by implementing a 

common aging policy, where the remaining processing time 

is decreased by the amount of work performed in a virtual 

PS scheduler. This technique, which we label Shortest 

Remaining Virtual Time (SRVT), results (in the absence of 

estimation errors) in scheduling jobs in series, following the 

order in which they would complete with the virtual PS. 

C.  Y. Chen, S. Alspaugh, and R. Katz, “Interactive query 

processing in big data systems: A cross-industry study of 

MapReduce workloads,” in Proc. of VLDB, 2012. 

Hadoop is a popular open source implementation of the 

MapReduce programming model for cloud computing. 

However, it faces a number of issues to achieve the best 

performance from the underlying systems. These include a 

serialization barrier that delays the reduce phase, repetitive 

merges, and disk accesses, and the lack of portability to 

different interconnects. To keep up with the increasing 

volume of data sets, Hadoop also requires efficient I/O 

capability from the underlying computer systems to process 

and analyze data. We describe Hadoop-A, an acceleration 

framework that optimizes Hadoop with plug-in components 

for fast data movement, overcoming the existing limitations. 

A novel network-levitated merge algorithm is introduced to 

merge data without repetition and disk access. In addition, a 

full pipeline is designed to overlap the shuffle, merge, and 

reduce phases. Our experimental results show that Hadoop-

A significantly speeds up data movement in MapReduce 

and doubles the throughput of Hadoop. In addition, Hadoop-

A significantly reduces disk accesses caused by intermediate 

data. 

 

III. RELATED WORK 

Big data is an unrolling concept which defines the 

typical large amount of unstructured, semi-structured and 

structured data. Big data doesn’t specify the derived data 

when speaking about the Zeta bytes, petabytes and 

Exabyte’ssize of data. 

Nowadays Big data is expanding around us every single 

minute.Its increasing factor is the use of internet processand 

social media generates it. Big data comes from multi 

sources at an alarming volume, variety and velocity [1].  

Big data plays important role in academics as well as 

industrial sources where the data generation ratio is at the 

peak. Relational database cannot be use always because it 

has certain limits so data scientist developed the concept of 

big data which can be used in efficient manner to accept 

challenges of bulk data storage. 

Mike Guiltier, Forrester Analyst, proposes a definition 

that attempts to be pragmatic and actionable for IT 

professionals: “Big Data is the frontier of a firm’s ability to 

store, process, and access (SPA) all the data it needs to 

operate effectively, make decisions, reduce risks, and serve 

customers” (Guiltier, December 2012).3V’S of Big Data. 

1.Velocity:-Analysis of the Batch process, Real Time 

process, datastreaming, when one takes chunks of data, it 

submits the job then there may be certain delay from the 

server. 

[1][2] 

2. Volume:-The size of data files is increasing with high 

ratio. The data size .The storage area is also increased from 

megabytes to Giga bytes, Zeta Bytes, petabytes and 

exabytes.Eg.Facebook generates around 500Tb of Data 

every single day. 

3. Variety:-In the era of internet the variety of data is 

changing day by day. It follows with structured data like 

tables and unstructured like videos, xml, audio etc. 

 
 

Fig. 1.Big Data Issues 

 

 

Differentiate Between Big Data and DBMS. 

1. Parallel database are actively querying the large data 

sets. 

2. DBMS supports only structured data where as Big 

Data supports structured, semi-structured and unstructured 

data. 

3. Parallel database are relational paradigm of rows and 

columns. 

Pillars of Big Data 

1. Text: The nature of text with all types of structures, 

unstructured and semi-structured. 

2. Tables: Table form-rows and columns. 

3. Graphs: Degree of separation, subjectpredicates, 

objectprediction, semantic discovery. [6] 

 

Hadoop 

Hadoop is a framework which is open-source for 

processing and storing big data in a distributed way on large 

clusters. It processes two tasks: large storage of data and 

processes faster with data. 

 

Framework: - It is to develop and to run software 

applications provides– programs, tool sets, connections, 

etc.[7] 
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Open-source software:-It is downloaded and can be 

used to develop the commercial software. Its broad [7] and 

open network can be easily, managed by the developers. 

Distributed Form: - Data is stored on multiple 

computers and divided in to equal chunks on the parallel 

connected nodes. 

Large storage. The Hadoop framework storeslarge 

amount of data by dividing into separate blocks and stored 

on clusters. 

Hadoop includes:- 

1. Hadoop Distributed File System (HDFS):-It manages 

the large amount of data that is stored in distributed fashion. 

2. Map Reduce:-a framework and a programming model 

for distributed processing [6] [7] on parallel clusters. 

 

HADOOP STRUCTURE 

1. Hadoop Distributed File System(HDFS) Structure. 

The HDFS is a distributed file system developed to 

execute on commodity hardware.The feature of HDFS is 

fault-tolerance and to be deployed on low-cost hardware. 

HDFS provides great access to data and is suitable for 

applications that have large data sets. [5]. 

The distribution of files is divided into chunks of 64MB 

size. 

 

The HFDS architecture contains a unit Name Node, 

multiple Data Nodes;it can also be stated as master slave 

like architecture. Name Node manages the mapping of file 

system namespace and regulates access to the block of files. 

Data Nodes are responsible for the process of read and write 

from the clients. It also performs operations like creation of 

blocks and deletion of blocks. [hadoop.apache] 

 
  Fig. 2.Hadoop Architecture. 

 

Map reduce 

• Map Reduce is a programming model and software 

framework first developed by Google (Google’s Map 

Reduce paper submitted in 2004). Intended to facilitate and 

simplify the processing of vast amounts of data in parallel 

on large clusters of commodity hardware in a reliable, fault-

tolerant manner, Petabytes of data, Thousands of nodes. 

Computational processing occurs on both: ▫ Unstructured 

data:file system ▫ Structured data:database. Underlying 

runtime system automatically parallelizes the computation 

across large-scale clusters of machines [4] 

 

 

Hadoop Scheduling: 

 

Hadoop implements the schedulers where resources are 

assigning to the jobs. Traditional scheduling gives us the 

scenario that all algorithms are not same and might not be as 

effective and dependent completely.We have to study 

various schedulers available in Hadoopand how relevant 

they are as compared to traditional schedulers in terms of 

performance, throughputs, time consuming etc. First in First 

out (FIFO) scheduler is a default scheduler which considers 

e order for submission of the jobs to get executed. 

 

 

I. FIFOScheduler. 

 

FIFO is traditional default scheduler which performs 

with the use ofqueue. Job is divided into several tasks and 

then loads to free slots of the queue on the task tracker. In 

filo the job have to wait for execution due to acquisition of 

clusters take place this leads to wait for other jobs for their 

turn. Shared clusters have ability for offering resources to 

users. 

 

II. Fair Scheduler. 

 

Fair scheduler groups jobs into “pools” and it allots each 

pool a guaranteed minimum share withsegment more 

capacity equally between pools. Facebook first develop the 

concept of fair scheduler to manage the access to their 

Hadoop and get the subsequent relation with the Hadoop 

environment. Poolshave minimum mapping slots 

andminimum reduced slots. The Fair Scheduler supports 

Preemption, so if a pool has not received its fair share 

for acertain period of time, then the scheduler will kill tasks 

inpools running over capacity in order to give the slots to 

the pool running under capacity [8]. 

 

III. Capacity Scheduler. 

 

Capacity scheduler organizes jobs into queues. It shares 

as percent of cluster. FIFO scheduling within each queue 

and it supports preemption. Yahoo developed the capacity 

scheduleraddresses a usage scenario where the number of 

users islarge, and there is a need to ensure a fair allocation 

of computation resources amongst users. 

[3][6]When a Task Tracker slot becomes free, the queue 

with thelowest load is chosen, from which the oldest 

remaining jobis chosen. A task is then scheduled from that 

job. 

 

IV. CONCLUSION 

 

Our work was motivated by the realization that MapReduce 

has evolved to the point where shared clusters are used for a 

wide range of workloads, which include a non-negligible 
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fraction of interactive data processing tasks. As a 

consequence, we have witnessed the raise of deployment 

best practices in which long sojourn times – due to a fair 

sharing of resources among competing jobs – were 

compensated by over dimensioned Hadoop clusters. In 

addition, we remarked that efficient cluster utilization could 

be approximated through a tedious manual exercise, 

involving the creation of static resource pools to 

accommodate workload diversity and an important tuning 

effort. To overcome such limitations, in this work we set off 

to study the benefits of a new scheduling discipline that 

targets at the same time short sojourn times and fairness 

among jobs.  

We thus proposed a size-based approach to scheduling 

jobs in Hadoop, which we called HFSP. Our work brought 

up several challenges: evaluating job size on-line without 

wasting resources, avoiding job starvation both on small and 

large jobs, and guaranteeing short sojourn time despite 

estimation errors were the most noteworthy. We solved 

these problems in the context of a multi-server system using 

virtual time and aging, that is built to be tolerant to failures, 

scale-out upgrades, and supports the composite job structure 

of Map Reduce. 

The system implementation is on the hadoop version 

1.2.1 which is a basic version of hadoop.The system can be 

made Scalable by using the hadoop version 2.X where some 

of the drawbacks can be overcome in 2.X 
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