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ABSTRACT 

 
ARTICLE INFO 

Hadoop represents a Java-based distributed computing framework that is designed to 

support applications that are implemented via the MapReduce programming model. 

Hadoop performance however is significantly affected by the settings of the Hadoop 

configuration parameters. Unfortunately, manually tuning these parameters is very 

time-consuming. Existing system uses Random forest approach, which automatically 

tune the Hadoop configuration parameters for optimized performance for a given 

application running on a given cluster. Random forest approach try every combination 

of configuration parameter values and choose the best one. Unfortunately, this is 

unrealistic because of the huge number of Hadoop configuration parameter 

combinations. This takes a considerable amount of time, leading to impractically long 

times. In the proposed system we consider the constraints in the resource allocation 

process in the MapReduce programming model for large-scale data processing for speed 

up performance. For that we proposed the novel technique called Dynamic approach for 

performing speed up of the available resources. It contains the two major operations; 

they are slot utilization optimization and utilization efficiency optimization. The 

Dynamic technique has the three slot allocation techniques they are Dynamic Hadoop 

Slot Allocation (DHSA), Speculative Execution Performance Balancing (SEPB), and Slot 

Prescheduling. It achieves a performance speedup by a factor of over the recently 

proposed cost-based optimization (CBO) approach. In addition performance benefit 

increases with input data set size. 
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I. INTRODUCTION 

 

MapReduce provides an effective solution to 

parallel program development and massive data 

processing on distributed platforms. As an open source 

implementation, Hadoop is widely used in building 

MapReduce-based applications on large clusters. Despite 

the popularity and usability of Hadoop, application 

developers and system users face a series of challenges to 

achieve good performance in their applications. It often 

requires specialized system knowledge and tuning skills 

to obtain appropriate configuration [2]. Researchers have 

shown that Hadoop configuration plays an important role 

in performance of MapReduce programs. Appropriate 

configuration settings could reduce execution time of jobs 

by using cluster resources efficiently and avoiding 

unnecessary disk I/Os. Moreover, some parameters decide 

if a job can be successfully executed and should be treated 

carefully. However, it is difficult to obtain an optimized 

configuration because: (1) there exists hundreds of 

parameters in the system; (2) parameters are related each 

other and act cooperatively; (3) configuration is 

application and hardware dependent, that is, optimized 

configuration is specific to characteristics and input 

dataset of an application for specified cluster. 

Previous configuration tuning works can be 

categorized into three groups: following best practices 

and MapReduce tuning guides, offline configuration 

tuning, and online configuration tuning. Online tuning 

systems search appropriate configuration by dynamically 

assigning test configurations to running tasks in the job. 
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However, there are multiple drawbacks in current online 

approach. Firstly, the searching strategies for finding 

optimal configuration take little consideration to 

characteristics of MapReduce; Secondly, they neglect 

efficient resource utilization in the whole system; Thirdly, 

after a desirable configuration is achieved, the job uses 

the same configuration afterwards. However, the 

configuration might not be suitable for latter tasks 

because of data skew. Inappropriate configuration can 

cause a task being killed due to out of memory error. 

While tuning configuration parameters improves task 

performance, using cluster resources efficiently can also 

achieve significant performance improvement. 

Researchers have shown that average resource utilization 

in real-world data centers is fairly low. Generally reasons 

for low resource utilization includes: (1) tasks request 

more resources than they actually need; (2) resource 

usage varies during task execution but the amount of 

resources allocated to a container is fixed; (3) rest 

resources in a node is not enough for new containers and 

remain idle. 

 

II. LITERATURE SURVEY 

 

RFHOC is an automated performance tuning 

approach that adjusts the Hadoop configuration 

parameters for an application running on a given cluster 

to achieve optimized performance. The model takes 

Hadoop configurations as input and outputs a 

performance prediction. In a subsequent step, we then use 

the performance prediction models for each phase as part 

of a genetic algorithm to search for the optimum Hadoop 

configuration for the application of interest. 

Limitation: This system automatically  tune the Hadoop 

configuration parameters and build analytical  models 

based  on oversimplified assumptions,  affecting the 

overall  model’s accuracy and  ultimately the achievable 

performance improvements.[1]  

 

Dili Wu  and  AniruddhaGokhaleA ,”Self-

Tuning  System  based  on  Application Profiling  and  

Performance  Analysis  for  Optimizing 

HadoopMapReduce  Cluster  Configuration” in this paper 

the  PPABS  framework comprises  two  distinct  phases  

called  the  Analyzer,  which  trains PPABS  to  form  a 

set  of  equivalence  classes  of  MapReduce applications  

for  which  the  most  appropriate  Hadoop config­uration  

parameters  that  maximally  improve  performance  for 

that class are  determined,  and the  Recognizer,  which  

classifies an  incoming  unknown  job  to one  of  these  

equivalence  classes so that  its  Hadoop  configuration  

parameters  can  be  self-tuned. Experimental  results  

comparing  the  performance improvements  for  three  

different  classes  of  applications  running on Hadoop  

clusters  deployed on Amazon  Ee2  show  promising 

results.  

Limitation:  Despite its popularity, however, application 

developers face numerous challenges in using the Hadoop 

framework, which stem from them having to effectively 

manage the resources of a MapReduce cluster, and 

configuring the framework in a way that will optimize the 

performance and reliability of MapReduce applications 

running on it.[2]  

 

Chi-Ou Chen, Ye-Qi Zhuo, Chao-Chun Yeh, 

Che-Min Lin, Shih-wei Liao, “Machine Learning-Based 

Configuration Parameter Tuning on Hadoop System” In 

this paper, he focus on optimizing the HadoopMapReduce 

job performance by tuning configuration parameters, and 

then we propose an analytical method to help system 

administrators choose approximately optimal 

configuration parameters depending on the characteristics 

of each application. approach has two key phases: 

prediction and optimization phase. The prediction phase is 

to estimate the performance of a MapReduce job, whereas 

the optimization phase is to search the approximately 

optimal configuration parameters strategically by 

invoking the predictor repeatedly. In our evaluationresults, 

our work can help system administrators to improve the 

performance about 2X to 8X better than traditional 

methods. 

Limitation: The prediction phase is to estimate the 

performance of a MapReduce job.[3]  

 

Xiaoan Ding, Yi Liu, DepeiQian, “JellyFish: 

Online Performance Tuning with Adaptive Configuration 

and Elastic Container in Hadoop Yarn”, this paper 

proposes an online performance tuning system, JellyFish, 

to improve performance of MapReduce jobs and increase 

resource utilization in Hadoop YARN. JellyFish 

continually collects real-time statistics to optimize 

configuration and resource allocation dynamically during 

execution of a job. During performance tuning process, 

JellyFish firstly tunes configuration parameters by 

reducing the dimensionality of search space with a divide-

and-conquer approach and using a model-based hill 

climbing algorithm to improve tuning efficiency; 

secondly, JellyFish re-schedules resources in nodes by 

using a novel elastic container that can expand and shrink 

dynamically according to resource usage, and a resource 

re-scheduling strategy to make full use of cluster 

resources. 

Limitation: Experimental results show that JellyFish can 

improve performance of MapReduce jobs by an average 

of 24% for jobs run for the first time, and by an average 

of 65% for jobs run multiple times compared to default 

YARN. [4]  

 

Amelie Chi Zhou and Bingsheng, 

“HeTransformation-Based Monetary Cost Optimizations 

for Workflows in the Cloud”, 2013., This paper proposes 

Transformation- based Optimization framework called as 

TOF for workflows in the cloud. TOF contains six basic 

workflow transformation operations. The transformation 

plan can be represented by the arbitrary performance and 

cost optimization process. In proposed TOF 

transformation based optimization framework is 

implemented. Its advantage is performance and cost 

optimization with the help of transformation sets and 

planner to guide the transformation It has two main 
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process, they are transformation model and planner. 

Transformation model means the set of transformation 

operations. Planner performs the transformation on the 

workflow based on the cost model.Recently, performance 

and monetary cost optimizations for workflows from 

various applications in the cloud have become a hot 

research topic. However, we find that most existing 

studies adopt ad hoc optimization strategies, which fail to 

capture the key optimization opportunities for different 

workloads and cloud offerings (e.g., virtual machines with 

different prices).  

Limitation: They consider only the single service 

provider. 

They used only the few transformation sets. [5] 

 

Jorda Polo, Claris Castillo, David Carrera, 

Yolanda Becerra, Ian Whalley, MalgorzataSteinder, Jordi 

Torres, and Eduard Ayguad,”Resource-aware Adaptive 

Scheduling for MapReduce Clusters”, This concept works 

for same workloads, but fails to capture the different 

resource requirements of individual jobs in multi-user 

environments. Their technique leverages job profiling 

information to dynamically adjust the number of slots on 

each machine, as well as workload placement across them, 

to maximize the resource utilization of the cluster. They 

present a resource-aware preparation technique for Map 

Re-duce multi-job workloads that aims at improving 

resource utilization across machines while observing 

completion time goals. 

Limitation: 

• They are not feasible due to number of 

the tasks. 

• They may overload the system due to 

previous control cycle.  

• They did not have enough memory for 

deploying the more memory tasks. [6]  

 

Y Wang, “Budget-Driven Scheduling 

Algorithms for Batches of Map Reduce Jobs in 

heterogeneous Clouds”, In this paper, they propose their 

task- level scheduling algorithms for Map Reduce 

workflows with the goals of optimizing budget and dead 

line constraints. They first consider the optimization 

problem under budget constraint where an in- stage local 

greedy algorithm is designed and combined with dynamic 

programming techniques to obtain an optimal global 

solution. To overcome the inherent complexity of the 

optimal solution, they also present two efficient greedy 

algorithms, called Global Greedy-Budget algorithm (GGB) 

and Gradual- Refinement algorithm (GR).In this paper, 

they studied two practical constraints on budget and dead 

line of or the scheduling of a batch of Map Reduce jobs as 

a workflow on a se t of (virtual) machines in the 

Cloud .First, they focused on the scheduling-length 

optimization under budget constraints. They designed a 

global optimal algorithm by combining dynamic 

programming techniques with a local greedy algorithm 

for budget distribution on per stage basis, which was also 

shown to be optimal.  

 

Limitation: It dynamically adjusts the size of a map task 

and assigns larger-size maps to the grid nodes with more 

powerful computing capabilities. Besides, it addresses the 

unevenly available bandwidth of a wide area network and 

avoids transferring large local regions owned by a single 

grid node to other nodes. [7]  

 

M Hammoud, “Locality-Aware Reduce Task 

Scheduling for Map Reduce”, 2011, Existing MapReduce 

schedulers define a static number of slots to represent the 

capacity of a cluster and create a fixed number of 

execution slots per machine. This abstraction works for 

homogeneous workloads, but fails to capture the different 

resource requirements of individual jobs in multi-user 

environments. Our technique leverages job profiling 

information to dynamically adjust the number of slots on 

each machine, as well as workload placement across them, 

to maximize the resource utilization of the cluster. In 

addition, our technique is guided by user-provided 

completion time goals for each job. 

Pioneer implementations of MapReduce have 

been designed to provide overall system goals. Thus, 

support for user-specified goals and resource utilization 

management have been left as secondary considerations at 

best. We believe that both capabilities are crucial for the 

further development and adoption of large-scale data 

processing. On one hand, more users wish for ad-hoc 

processing in order to perform short-term tasks. Therefore, 

providing consistency between price and the quality of 

service obtained is key to the business model of the Cloud. 

Resource management, on the other hand, is also 

important as Cloud providers are motivated by profit and 

hence require both high levels of automation and resource 

utilization while avoiding bottlenecks.In the proposed 

system, we present RAS, a Resource-aware Adaptive 

Scheduler for MapReduce capable of improving resource 

utilization and which is guided by completion time goals. 

In addition, RAS addresses the system administration 

issue of configuring the number of slots for each machine 

and static solution for a multi-job MapReduce cluster. 

While the existing work focuses on the current typed-slot 

model|wherein the number of tasks per worker is fixed 

throughout the lifetime of the cluster, and slots can host 

tasks from any job. 

Limitation: It doesn’t have the dynamic capacity control 

in their scheduler to adaptively change the allocations to 

meet higher level SLA goals such as deadlines. [8]  

 

Ganesh Anantha narayanan, Srikanth Kandula,  

Albert Greenberg,”Reining in the Outliers in Map-Reduce 

Clusters using Mantri”, 2010, Mantri identifies points at 

which tasks are unable to make progress at the normal 

rate and implements targeted solutions.  If a task straggles 

due to contention for resources on the machine, restarting 

or duplicating it elsewhere can speed it up.  If a task 

straggles due to contention for resources on the machine, 

restarting or duplicating it elsewhere can speed it up. 

Limitation: The reason for poor performance is that they 

miss outliers that happen early in the phase and by not 
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knowing the true causes of outliers, the duplicates they 

schedule are mostly not useful. [9] 

 

Jeffrey Dean and Sanjay Ghemawat , “Map-

Reduce: Simplified Data Processing on Large Clusters”, 

2004,MapReduce is a programming model and an 

associated implementation for processing and generating 

large data sets. Users specify a map function that 

processes a key/value pair to generate a set of 

intermediate key/value pairs, and a reduce function that 

merges all intermediate values associated with the same 

intermediate key. Many real world tasks are expressible in 

this model, as shownin the paper. Programs written in this 

functional style are automatically parallelized and 

executed on a large cluster of commodity machines. The 

run-time system takes care of the details of partitioning 

the input data, scheduling the program's execution across 

a set of machines, handling machine failures, and 

managing the required inter-machine communication. 

This allows programmers without any experience with 

parallel and distributed systems to easily utilize the 

resources of a large distributed system. Our 

implementation of MapReduce runs on a large cluster of 

commodity machines and is highly scalable: a typical 

MapReduce computation processes many terabytes of 

data on thousands of machines. Programmers _nd the 

system easy to use: hundreds of MapReduce programs 

have been implemented and upwards of one thousand 

MapReduce jobs are executed on Google's clusters every 

day. 

Limitation: The cluster consists of hundred of thousands 

of machines, and therefore machine failures are 

common.[10] 

 

III. BASIC CONCEPT 

 

Map Reduce: 

Map Reduce is a processing technique and a 

program  model for distributed computing based on java. 

It contains two important tasks, namely Map and Reduce. 

The major advantages of MapReduce is that it is easy to 

scale data processing over multiple computing nodes [4]. 

 

Hadoop Distributed File System(HDFS): 

It is distributed file system designed to run on 

commodity hardware. This system provides high- 

throughput access to application data. HDFS is highly 

fault- tolerant and is designed to be deployed on  low-cost 

hardware. Application that run on HDFS has large data 

sets. Typically file in HDFS is gigabytes to terabytes in 

size [5].  It should support tens of millions of files in a 

single instance. HDFS is designed more for batch process  

in  gather than interactive use by users. Detection of faults 

and quick, automatic recovery from them is a core goal of 

HDFS. HDFS has been designed to easily portable from 

one platform to another. HDFS has a Master-slave 

architecture. An HDFS cluster consist of a single Name 

Node, a master serves that manages the file system 

namespaces and regulates access to files by clients. In 

addition, there are number of data nodes, usually one per 

node in the cluster, which manage storage attached to the 

nodes that they run on [4]. 

 

IV. EXISTING SYSTEM 

 

RFHOC is an automated performance tuning 

approach that adjusts the Hadoop configuration 

parameters for an application running on a given cluster 

to achieve optimized performance. The model takes 

Hadoop configurations as input and outputs a 

performance prediction. In a subsequent step, we then use 

the performance prediction models for each phase as part 

of a genetic algorithm to search for the optimum Hadoop 

configuration for the application of interest. 

 

 Fig 1. Existing System 

 

Problem Statement: 

Existing RFHOC is an automated performance 

tuning approach that adjusts the Hadoop configuration 

parameters for an application running on a given cluster 

to achieve optimized performance [2]. Performance 

tuning is a challenging problem for  Hadoop/MapReduce 

workloads because of the large  number of Hadoop 

configuration parameters. Previously proposed techniques 

automatically tune the Hadoop configuration parameters 

and build analytical  models based  on oversimplified 

assumptions,  affecting the overall  model’s accuracy and  

ultimately the achievable performance improvements. 

 

V. PROPOSED SYSTEM 

 

We proposed alternate technique to improve 

performance speedup using three techniques. Dynamic 

slot allocation Scheme (DSAS), it allows slot to reallocate 

or reduce slots based on its need. Execution Performance 

balancing Scheme to balance the performance criteria 

between single job and group of jobs. Slot Pre-scheduling 

technique that can perform data locality with cost fairness. 

Thus we produce a system called Dynamic MR to 

improve the performance Map Reduce data set 

significantly.  

In the dynamic process apart from the three 

concepts present in the paper we are going to introduce 

clustering approach. In addition to the multi data center 

processing we are going to add clustering concept. 

Because we are going to split the data and process the 

data in multiple datacenters. If we combine the similar 

data’s into clusters algorithm. By clustering the data we 
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can able to process the data in short execution time. After 

preprocessing, we split our process into multiple files and 

apply clustering process. Here we are going to use 

clustering algorithm which is a standard algorithm, which 

helps to process the data in a short execution time and 

also improve the performance speed up of the system. 

 

System architecture: 

 

 Fig 2. System architecture 

 

VI. METHODOLOGY 

 

Preprocessing Technique-IMPUTATION: 

Imputation is the process of replacing missing 

data with substituted values. Single imputation-A once-

common method of imputation was hot-deck imputation 

where a missing value was imputed from a randomly 

selected similar record. In cases with imputation, there is 

guaranteed to be no relationship between the imputed 

variable and any other measured variables. Thus, mean 

imputation has some attractive properties for univariate 

analysis but becomes problematic for multivariate 

analysis. 

 

Slot allocation and Slot pre-scheduling process: 

In this module we are going to perform two 

processes.  Slot allocation Slot pre-scheduling process. In 

this slot allocation process we are going allocate the slot 

based on dynamic Hadoop slot allocation optimization 

mechanism. In the slot pre-scheduling process we are 

going to improve the data locality. Slot Pre-Scheduling 

technique that can improve the data locality while having 

no negative impact on the fairness of Map-Reduce jobs. 

Some idle slots which cannot be allocated due to the load 

balancing constrain during runtime, we can pre-allocate 

those slots of the node to jobs to maximize the data 

locality. 

 

Hadoop Distributed File System (DFS): 

Hadoop Distributed File System (DFS) will be 

configured for uploading the preprocessed geo data into 

hadoop. The configuration includes setting VM 

(hadoopplatform) IP and port for connection. 

FSDataInputStream and FSDataOutputStreamis used to 

upload and download data from hadoop. Different 

datacenters are analysed for data execution across 

different datacenters. 

 

Speculative Execution Performance Balancing: 

When a node has an idle map slot, we should 

choose pending map tasks first before looking for 

speculative map tasks for a batch of jobs. Hadoop Slot is 

executed for determining path for performing the 

MapReduce job. After this the Speculative based process 

starts to execute the determined optimized Multi-

execution path. Executing individual MapReduce jobs in 

each datacenter on corresponding inputs and then 

aggregating results is defined as MULTI execution path. 

This path used to execute the jobs effectively. 

 

Performance Evaluation: 

Speculative execution is a common approach for 

dealing with the straggler problem by simply backing up 

those slow running tasks on alternative machines.   

Multiple speculative execution strategies have been 

proposed, but there is a pitfall: incoming jobs are 

allocated to nodes present in server and fail to schedule 

process type allocate to node for processing. Performance 

is evaluated by means of selective the optimized resources 

and results taken in terms of execution time, processing 

memory etc. 

 

VII. FUTURE SCOPE 

 

In future work we will work on hadoop 

environment to improve resource allocation and 

performance speed up. And we also check the 

performance of hadoop on cloud environment. 

 

VIII. CONCLUSION 

 

In this project we study smart data processing 

using the resource allocation process in the MapReduce 

programming model for large-scale data processing. We 

perform data center resizing and data routing to reduce 

the operational cost in datacenters for big data processing. 

And also minimize the cost of data center and improve the 

performance and speedup. 
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