
www.ierjournal.org International Engineering Research Journal (IERJ), Volume 2 Issue 6 Page 2175-2180, 2016 ISSN 2395-1621

© 2016, IERJ All Rights Reserved Page 1

 ISSN 2395-1621

Optimization Framework for Map

Reduce Clusters on Hadoop’s

Configuration

#1
Trupti Mali,

#2
Prof. Deepti Varshney

1truptimali21@gmail.com

2varshneydeepti11@gmail.com

#1

Department of Computer Engineering
#2

HOD, Department of Computer Engineering

Shree Ramchandra College of Engineering, Lonikand,

Pune, India

ABSTRACT

ARTICLE INFO

Hadoop represents a Java-based distributed computing framework that is designed to

support applications that are implemented via the MapReduce programming model.

Hadoop performance however is significantly affected by the settings of the Hadoop

configuration parameters. Unfortunately, manually tuning these parameters is very

time-consuming. Existing system uses Random forest approach, which automatically

tune the Hadoop configuration parameters for optimized performance for a given

application running on a given cluster. Random forest approach try every combination

of configuration parameter values and choose the best one. Unfortunately, this is

unrealistic because of the huge number of Hadoop configuration parameter

combinations. This takes a considerable amount of time, leading to impractically long

times. In the proposed system we consider the constraints in the resource allocation

process in the MapReduce programming model for large-scale data processing for speed

up performance. For that we proposed the novel technique called Dynamic approach for

performing speed up of the available resources. It contains the two major operations;

they are slot utilization optimization and utilization efficiency optimization. The

Dynamic technique has the three slot allocation techniques they are Dynamic Hadoop

Slot Allocation (DHSA), Speculative Execution Performance Balancing (SEPB), and Slot

Prescheduling. It achieves a performance speedup by a factor of over the recently

proposed cost-based optimization (CBO) approach. In addition performance benefit

increases with input data set size.

Keywords: Map Reduce, Hadoop, Clustering, HDFS.

Article History

Received: 4
th

 December 2016

Received in revised form :

4
th

 December 2016

Accepted: 8
th

 December 2016

Published online :

8
th

 December 2016

I. INTRODUCTION

MapReduce provides an effective solution to

parallel program development and massive data

processing on distributed platforms. As an open source

implementation, Hadoop is widely used in building

MapReduce-based applications on large clusters. Despite

the popularity and usability of Hadoop, application

developers and system users face a series of challenges to

achieve good performance in their applications. It often

requires specialized system knowledge and tuning skills

to obtain appropriate configuration [2]. Researchers have

shown that Hadoop configuration plays an important role

in performance of MapReduce programs. Appropriate

configuration settings could reduce execution time of jobs

by using cluster resources efficiently and avoiding

unnecessary disk I/Os. Moreover, some parameters decide

if a job can be successfully executed and should be treated

carefully. However, it is difficult to obtain an optimized

configuration because: (1) there exists hundreds of

parameters in the system; (2) parameters are related each

other and act cooperatively; (3) configuration is

application and hardware dependent, that is, optimized

configuration is specific to characteristics and input

dataset of an application for specified cluster.

Previous configuration tuning works can be

categorized into three groups: following best practices

and MapReduce tuning guides, offline configuration

tuning, and online configuration tuning. Online tuning

systems search appropriate configuration by dynamically

assigning test configurations to running tasks in the job.

www.ierjournal.org International Engineering Research Journal (IERJ), Volume 2 Issue 6 Page 2175-2180, 2016 ISSN 2395-1621

© 2016, IERJ All Rights Reserved Page 2

However, there are multiple drawbacks in current online

approach. Firstly, the searching strategies for finding

optimal configuration take little consideration to

characteristics of MapReduce; Secondly, they neglect

efficient resource utilization in the whole system; Thirdly,

after a desirable configuration is achieved, the job uses

the same configuration afterwards. However, the

configuration might not be suitable for latter tasks

because of data skew. Inappropriate configuration can

cause a task being killed due to out of memory error.

While tuning configuration parameters improves task

performance, using cluster resources efficiently can also

achieve significant performance improvement.

Researchers have shown that average resource utilization

in real-world data centers is fairly low. Generally reasons

for low resource utilization includes: (1) tasks request

more resources than they actually need; (2) resource

usage varies during task execution but the amount of

resources allocated to a container is fixed; (3) rest

resources in a node is not enough for new containers and

remain idle.

II. LITERATURE SURVEY

RFHOC is an automated performance tuning

approach that adjusts the Hadoop configuration

parameters for an application running on a given cluster

to achieve optimized performance. The model takes

Hadoop configurations as input and outputs a

performance prediction. In a subsequent step, we then use

the performance prediction models for each phase as part

of a genetic algorithm to search for the optimum Hadoop

configuration for the application of interest.

Limitation: This system automatically tune the Hadoop

configuration parameters and build analytical models

based on oversimplified assumptions, affecting the

overall model’s accuracy and ultimately the achievable

performance improvements.[1]

Dili Wu and AniruddhaGokhaleA ,”Self-

Tuning System based on Application Profiling and

Performance Analysis for Optimizing

HadoopMapReduce Cluster Configuration” in this paper

the PPABS framework comprises two distinct phases

called the Analyzer, which trains PPABS to form a

set of equivalence classes of MapReduce applications

for which the most appropriate Hadoop config­uration

parameters that maximally improve performance for

that class are determined, and the Recognizer, which

classifies an incoming unknown job to one of these

equivalence classes so that its Hadoop configuration

parameters can be self-tuned. Experimental results

comparing the performance improvements for three

different classes of applications running on Hadoop

clusters deployed on Amazon Ee2 show promising

results.

Limitation: Despite its popularity, however, application

developers face numerous challenges in using the Hadoop

framework, which stem from them having to effectively

manage the resources of a MapReduce cluster, and

configuring the framework in a way that will optimize the

performance and reliability of MapReduce applications

running on it.[2]

Chi-Ou Chen, Ye-Qi Zhuo, Chao-Chun Yeh,

Che-Min Lin, Shih-wei Liao, “Machine Learning-Based

Configuration Parameter Tuning on Hadoop System” In

this paper, he focus on optimizing the HadoopMapReduce

job performance by tuning configuration parameters, and

then we propose an analytical method to help system

administrators choose approximately optimal

configuration parameters depending on the characteristics

of each application. approach has two key phases:

prediction and optimization phase. The prediction phase is

to estimate the performance of a MapReduce job, whereas

the optimization phase is to search the approximately

optimal configuration parameters strategically by

invoking the predictor repeatedly. In our evaluationresults,

our work can help system administrators to improve the

performance about 2X to 8X better than traditional

methods.

Limitation: The prediction phase is to estimate the

performance of a MapReduce job.[3]

Xiaoan Ding, Yi Liu, DepeiQian, “JellyFish:

Online Performance Tuning with Adaptive Configuration

and Elastic Container in Hadoop Yarn”, this paper

proposes an online performance tuning system, JellyFish,

to improve performance of MapReduce jobs and increase

resource utilization in Hadoop YARN. JellyFish

continually collects real-time statistics to optimize

configuration and resource allocation dynamically during

execution of a job. During performance tuning process,

JellyFish firstly tunes configuration parameters by

reducing the dimensionality of search space with a divide-

and-conquer approach and using a model-based hill

climbing algorithm to improve tuning efficiency;

secondly, JellyFish re-schedules resources in nodes by

using a novel elastic container that can expand and shrink

dynamically according to resource usage, and a resource

re-scheduling strategy to make full use of cluster

resources.

Limitation: Experimental results show that JellyFish can

improve performance of MapReduce jobs by an average

of 24% for jobs run for the first time, and by an average

of 65% for jobs run multiple times compared to default

YARN. [4]

Amelie Chi Zhou and Bingsheng,

“HeTransformation-Based Monetary Cost Optimizations

for Workflows in the Cloud”, 2013., This paper proposes

Transformation- based Optimization framework called as

TOF for workflows in the cloud. TOF contains six basic

workflow transformation operations. The transformation

plan can be represented by the arbitrary performance and

cost optimization process. In proposed TOF

transformation based optimization framework is

implemented. Its advantage is performance and cost

optimization with the help of transformation sets and

planner to guide the transformation It has two main

www.ierjournal.org International Engineering Research Journal (IERJ), Volume 2 Issue 6 Page 2175-2180, 2016 ISSN 2395-1621

© 2016, IERJ All Rights Reserved Page 3

process, they are transformation model and planner.

Transformation model means the set of transformation

operations. Planner performs the transformation on the

workflow based on the cost model.Recently, performance

and monetary cost optimizations for workflows from

various applications in the cloud have become a hot

research topic. However, we find that most existing

studies adopt ad hoc optimization strategies, which fail to

capture the key optimization opportunities for different

workloads and cloud offerings (e.g., virtual machines with

different prices).

Limitation: They consider only the single service

provider.

They used only the few transformation sets. [5]

Jorda Polo, Claris Castillo, David Carrera,

Yolanda Becerra, Ian Whalley, MalgorzataSteinder, Jordi

Torres, and Eduard Ayguad,”Resource-aware Adaptive

Scheduling for MapReduce Clusters”, This concept works

for same workloads, but fails to capture the different

resource requirements of individual jobs in multi-user

environments. Their technique leverages job profiling

information to dynamically adjust the number of slots on

each machine, as well as workload placement across them,

to maximize the resource utilization of the cluster. They

present a resource-aware preparation technique for Map

Re-duce multi-job workloads that aims at improving

resource utilization across machines while observing

completion time goals.

Limitation:

• They are not feasible due to number of

the tasks.

• They may overload the system due to

previous control cycle.

• They did not have enough memory for

deploying the more memory tasks. [6]

Y Wang, “Budget-Driven Scheduling

Algorithms for Batches of Map Reduce Jobs in

heterogeneous Clouds”, In this paper, they propose their

task- level scheduling algorithms for Map Reduce

workflows with the goals of optimizing budget and dead

line constraints. They first consider the optimization

problem under budget constraint where an in- stage local

greedy algorithm is designed and combined with dynamic

programming techniques to obtain an optimal global

solution. To overcome the inherent complexity of the

optimal solution, they also present two efficient greedy

algorithms, called Global Greedy-Budget algorithm (GGB)

and Gradual- Refinement algorithm (GR).In this paper,

they studied two practical constraints on budget and dead

line of or the scheduling of a batch of Map Reduce jobs as

a workflow on a se t of (virtual) machines in the

Cloud .First, they focused on the scheduling-length

optimization under budget constraints. They designed a

global optimal algorithm by combining dynamic

programming techniques with a local greedy algorithm

for budget distribution on per stage basis, which was also

shown to be optimal.

Limitation: It dynamically adjusts the size of a map task

and assigns larger-size maps to the grid nodes with more

powerful computing capabilities. Besides, it addresses the

unevenly available bandwidth of a wide area network and

avoids transferring large local regions owned by a single

grid node to other nodes. [7]

M Hammoud, “Locality-Aware Reduce Task

Scheduling for Map Reduce”, 2011, Existing MapReduce

schedulers define a static number of slots to represent the

capacity of a cluster and create a fixed number of

execution slots per machine. This abstraction works for

homogeneous workloads, but fails to capture the different

resource requirements of individual jobs in multi-user

environments. Our technique leverages job profiling

information to dynamically adjust the number of slots on

each machine, as well as workload placement across them,

to maximize the resource utilization of the cluster. In

addition, our technique is guided by user-provided

completion time goals for each job.

Pioneer implementations of MapReduce have

been designed to provide overall system goals. Thus,

support for user-specified goals and resource utilization

management have been left as secondary considerations at

best. We believe that both capabilities are crucial for the

further development and adoption of large-scale data

processing. On one hand, more users wish for ad-hoc

processing in order to perform short-term tasks. Therefore,

providing consistency between price and the quality of

service obtained is key to the business model of the Cloud.

Resource management, on the other hand, is also

important as Cloud providers are motivated by profit and

hence require both high levels of automation and resource

utilization while avoiding bottlenecks.In the proposed

system, we present RAS, a Resource-aware Adaptive

Scheduler for MapReduce capable of improving resource

utilization and which is guided by completion time goals.

In addition, RAS addresses the system administration

issue of configuring the number of slots for each machine

and static solution for a multi-job MapReduce cluster.

While the existing work focuses on the current typed-slot

model|wherein the number of tasks per worker is fixed

throughout the lifetime of the cluster, and slots can host

tasks from any job.

Limitation: It doesn’t have the dynamic capacity control

in their scheduler to adaptively change the allocations to

meet higher level SLA goals such as deadlines. [8]

Ganesh Anantha narayanan, Srikanth Kandula,

Albert Greenberg,”Reining in the Outliers in Map-Reduce

Clusters using Mantri”, 2010, Mantri identifies points at

which tasks are unable to make progress at the normal

rate and implements targeted solutions. If a task straggles

due to contention for resources on the machine, restarting

or duplicating it elsewhere can speed it up. If a task

straggles due to contention for resources on the machine,

restarting or duplicating it elsewhere can speed it up.

Limitation: The reason for poor performance is that they

miss outliers that happen early in the phase and by not

www.ierjournal.org International Engineering Research Journal (IERJ), Volume 2 Issue 6 Page 2175-2180, 2016 ISSN 2395-1621

© 2016, IERJ All Rights Reserved Page 4

knowing the true causes of outliers, the duplicates they

schedule are mostly not useful. [9]

Jeffrey Dean and Sanjay Ghemawat , “Map-

Reduce: Simplified Data Processing on Large Clusters”,

2004,MapReduce is a programming model and an

associated implementation for processing and generating

large data sets. Users specify a map function that

processes a key/value pair to generate a set of

intermediate key/value pairs, and a reduce function that

merges all intermediate values associated with the same

intermediate key. Many real world tasks are expressible in

this model, as shownin the paper. Programs written in this

functional style are automatically parallelized and

executed on a large cluster of commodity machines. The

run-time system takes care of the details of partitioning

the input data, scheduling the program's execution across

a set of machines, handling machine failures, and

managing the required inter-machine communication.

This allows programmers without any experience with

parallel and distributed systems to easily utilize the

resources of a large distributed system. Our

implementation of MapReduce runs on a large cluster of

commodity machines and is highly scalable: a typical

MapReduce computation processes many terabytes of

data on thousands of machines. Programmers _nd the

system easy to use: hundreds of MapReduce programs

have been implemented and upwards of one thousand

MapReduce jobs are executed on Google's clusters every

day.

Limitation: The cluster consists of hundred of thousands

of machines, and therefore machine failures are

common.[10]

III. BASIC CONCEPT

Map Reduce:

Map Reduce is a processing technique and a

program model for distributed computing based on java.

It contains two important tasks, namely Map and Reduce.

The major advantages of MapReduce is that it is easy to

scale data processing over multiple computing nodes [4].

Hadoop Distributed File System(HDFS):

It is distributed file system designed to run on

commodity hardware. This system provides high-

throughput access to application data. HDFS is highly

fault- tolerant and is designed to be deployed on low-cost

hardware. Application that run on HDFS has large data

sets. Typically file in HDFS is gigabytes to terabytes in

size [5]. It should support tens of millions of files in a

single instance. HDFS is designed more for batch process

in gather than interactive use by users. Detection of faults

and quick, automatic recovery from them is a core goal of

HDFS. HDFS has been designed to easily portable from

one platform to another. HDFS has a Master-slave

architecture. An HDFS cluster consist of a single Name

Node, a master serves that manages the file system

namespaces and regulates access to files by clients. In

addition, there are number of data nodes, usually one per

node in the cluster, which manage storage attached to the

nodes that they run on [4].

IV. EXISTING SYSTEM

RFHOC is an automated performance tuning

approach that adjusts the Hadoop configuration

parameters for an application running on a given cluster

to achieve optimized performance. The model takes

Hadoop configurations as input and outputs a

performance prediction. In a subsequent step, we then use

the performance prediction models for each phase as part

of a genetic algorithm to search for the optimum Hadoop

configuration for the application of interest.

 Fig 1. Existing System

Problem Statement:

Existing RFHOC is an automated performance

tuning approach that adjusts the Hadoop configuration

parameters for an application running on a given cluster

to achieve optimized performance [2]. Performance

tuning is a challenging problem for Hadoop/MapReduce

workloads because of the large number of Hadoop

configuration parameters. Previously proposed techniques

automatically tune the Hadoop configuration parameters

and build analytical models based on oversimplified

assumptions, affecting the overall model’s accuracy and

ultimately the achievable performance improvements.

V. PROPOSED SYSTEM

We proposed alternate technique to improve

performance speedup using three techniques. Dynamic

slot allocation Scheme (DSAS), it allows slot to reallocate

or reduce slots based on its need. Execution Performance

balancing Scheme to balance the performance criteria

between single job and group of jobs. Slot Pre-scheduling

technique that can perform data locality with cost fairness.

Thus we produce a system called Dynamic MR to

improve the performance Map Reduce data set

significantly.

In the dynamic process apart from the three

concepts present in the paper we are going to introduce

clustering approach. In addition to the multi data center

processing we are going to add clustering concept.

Because we are going to split the data and process the

data in multiple datacenters. If we combine the similar

data’s into clusters algorithm. By clustering the data we

www.ierjournal.org International Engineering Research Journal (IERJ), Volume 2 Issue 6 Page 2175-2180, 2016 ISSN 2395-1621

© 2016, IERJ All Rights Reserved Page 5

can able to process the data in short execution time. After

preprocessing, we split our process into multiple files and

apply clustering process. Here we are going to use

clustering algorithm which is a standard algorithm, which

helps to process the data in a short execution time and

also improve the performance speed up of the system.

System architecture:

 Fig 2. System architecture

VI. METHODOLOGY

Preprocessing Technique-IMPUTATION:

Imputation is the process of replacing missing

data with substituted values. Single imputation-A once-

common method of imputation was hot-deck imputation

where a missing value was imputed from a randomly

selected similar record. In cases with imputation, there is

guaranteed to be no relationship between the imputed

variable and any other measured variables. Thus, mean

imputation has some attractive properties for univariate

analysis but becomes problematic for multivariate

analysis.

Slot allocation and Slot pre-scheduling process:

In this module we are going to perform two

processes. Slot allocation Slot pre-scheduling process. In

this slot allocation process we are going allocate the slot

based on dynamic Hadoop slot allocation optimization

mechanism. In the slot pre-scheduling process we are

going to improve the data locality. Slot Pre-Scheduling

technique that can improve the data locality while having

no negative impact on the fairness of Map-Reduce jobs.

Some idle slots which cannot be allocated due to the load

balancing constrain during runtime, we can pre-allocate

those slots of the node to jobs to maximize the data

locality.

Hadoop Distributed File System (DFS):

Hadoop Distributed File System (DFS) will be

configured for uploading the preprocessed geo data into

hadoop. The configuration includes setting VM

(hadoopplatform) IP and port for connection.

FSDataInputStream and FSDataOutputStreamis used to

upload and download data from hadoop. Different

datacenters are analysed for data execution across

different datacenters.

Speculative Execution Performance Balancing:

When a node has an idle map slot, we should

choose pending map tasks first before looking for

speculative map tasks for a batch of jobs. Hadoop Slot is

executed for determining path for performing the

MapReduce job. After this the Speculative based process

starts to execute the determined optimized Multi-

execution path. Executing individual MapReduce jobs in

each datacenter on corresponding inputs and then

aggregating results is defined as MULTI execution path.

This path used to execute the jobs effectively.

Performance Evaluation:

Speculative execution is a common approach for

dealing with the straggler problem by simply backing up

those slow running tasks on alternative machines.

Multiple speculative execution strategies have been

proposed, but there is a pitfall: incoming jobs are

allocated to nodes present in server and fail to schedule

process type allocate to node for processing. Performance

is evaluated by means of selective the optimized resources

and results taken in terms of execution time, processing

memory etc.

VII. FUTURE SCOPE

In future work we will work on hadoop

environment to improve resource allocation and

performance speed up. And we also check the

performance of hadoop on cloud environment.

VIII. CONCLUSION

In this project we study smart data processing

using the resource allocation process in the MapReduce

programming model for large-scale data processing. We

perform data center resizing and data routing to reduce

the operational cost in datacenters for big data processing.

And also minimize the cost of data center and improve the

performance and speedup.

REFERENCE

[1] Zhendong Bei, Zhibin Yu, Member, IEEE, Huiling

Zhang, Wen Xiong,”RFHOC: A Random-Forest

Approach to Auto-Tuning Hadoop's Configuration”,

JOURNALOF L ATEX CLASS FILES, VOL. 6, NO. 1,

IEEE, JANUARY 2007.

[2] Dili Wu and AniruddhaGokhaleA ,”Self-Tuning

System based on Application Profiling and Performance

Analysis for Optimizing HadoopMapReduce Cluster

Configuration” ISIS, Dept of EEeS, Vanderbilt University,

1025 16th Ave S, Nashville, TN 37212, USA, IEEE,2013.

www.ierjournal.org International Engineering Research Journal (IERJ), Volume 2 Issue 6 Page 2175-2180, 2016 ISSN 2395-1621

© 2016, IERJ All Rights Reserved Page 6

[3] Chi-Ou Chen, Ye-Qi Zhuo, Chao-Chun Yeh, Che-Min

Lin, Shih-wei Liao, “Machine Learning-Based

Configuration Parameter Tuning on Hadoop System”,

978-1-4673-7278-7/15, IEEE,2015.

[4] Xiaoan Ding, Yi Liu, DepeiQian, “JellyFish: Online

Performance Tuning with Adaptive Configuration and

Elastic Container in Hadoop Yarn”, 1521-9097/15, 2015

IEEE 2015.

[5] Coupling task progress for Map Reduce resource

aware scheduling. J. Tan, X. Q. Meng, L. Zhang.

[6] Map-Reduce: Simplified Data Processing on Large

Clusters J. Dean and S. Ghemawat.

[7] Reining in the Outliers in Map-Reduce Clusters using

Mantri, Ganesh Ananthanarayanan,SrikanthKandula,

Albert Greenberg.

[8] Resource-aware Adaptive Scheduling for Map-Reduce

Clusters. J. Polo, C. Castillo, D. Carrera.

[9] Two Sides of a Coin: Optimizing the Schedule of

MapReduce Jobs to Minimize Their Makespan and

Improve Cluster.

[10] B. Moseley, A. Dasgupta, R. Kumar, T. Sarl, On

scheduling in map-reduce and flow-shops. In SPAA’11,

pp. 289-298, 2011.

[11] C. O˘guz, M.F. Ercan, Scheduling multiprocessor

tasks in a two-stage flow-shop environment. Proceedings

of the 21st international conference on Computers and

industrial engineering, pp. 269-272, 1997.

[12] B. Palanisamy, A. Singh, L. Liu and B. Jain,

Purlieus: Localityaware Resource Allocation for

MapReduce in a Cloud, In SC’11, pp. 1-11, 2011.

[13] J. Polo, C. Castillo, D. Carrera, et al. Resource-aware

Adaptive Scheduling for MapReduce Clusters.In

Middleware’11, pp. 187-207, 2011.

[14] J. Tan, X. Q. Meng, L. Zhang. Coupling task

progress for Map Reduce resource aware scheduling.In

IEEE Infocom’13, pp. 1618-1626, 2013.

[15] J. Tan, S. C. Meng, X. Q. Meng, L. Zhang.

Improving ReduceTask data locality for sequential

MapReduce jobs.In IEEE Infocom’13, pp. 1627-1635,

2013.

