Cold Start Emission Reduction Techniques of an IC Engine: A Review

Swaroopsinh B. Bore

PG student, Department of Mechanical Engineering, Government College of Engineering Karad, Karad,Maharashtra, India.

Dr. Ashok T. Pise

Professor, Department of Mechanical Engineering, Government College of Engineering Karad, Karad, Maharashtra, India.

Abstract:

Air pollution generated from mobile sources is a problem of general interest. Due to incomplete combustion in the engine, there are a number of incomplete combustion products CO, HC, NOx, particulate matters etc. These pollutants have negative impact on air quality, environment and human health that leads in stringent norms of pollutant emission. Nearly 60-80% of engine emissions occur in the engine cold start during first 300s. To reducing emissions during cold start of an IC engine many techniques has been invented. Among them use of the latent heat storage system is one of the best methods to reduce emissions from IC engine. There are many researchers designed, analyzed & tested latent thermal energy storage system (LTESS) to reduce emissions during cold start of an IC engine.

This review paper discusses these techniques to control emissions during cold start period using latent thermal energy storage system. Using latent thermal energy storage system we can maintain the temperature of engine or catalytic converter which directly affects on the emissions during cold start period.

Keywords: Phase change material (PCM), IC engine, Catalytic converter, cold start period, light off temperature, emissions.

Introduction:

Now a day's motor vehicles are the major source of air pollution in the world. Automobile vehicles consume petroleum fuels and produces the emissions like carbon monoxides (CO), unburn hydrocarbons (HC) and oxides of nitrogen (NOx). As government stringent the norms in each country like EUROIV (European Union) and BSIV (Bharat Stage, India), it is essential to reduce the emissions from the vehicles. Nearly 60-80% of engine emissions occurs in the engine cold start during first 300s in the case of New European D.C. and the US FTP 75 cycles[2]. Over long years we are use catalytic converter as an emission controlled device in the vehicles. But its performance mainly depends on its temperature[2]. The conversion efficiency of catalytic converter increase as its temperature increases. When conversion efficiency of catalytic converter is equal to 50%, that temperature is called as "light off temperature". The light off temperature of catalytic converter mainly depends upon pollutant composition and active catalyst material. For the

base metal catalyst it is around $350^{\circ}C[1]$.

The catalytic converter besides the housing has three main components:

- Catalyst: Pt, Pd & Rh.
- Substrate or Support: Ceramic honeycomb or metallic honeycomb.
- Intermediate coat or washcoat: Mixture of Si or Alumina.[8]

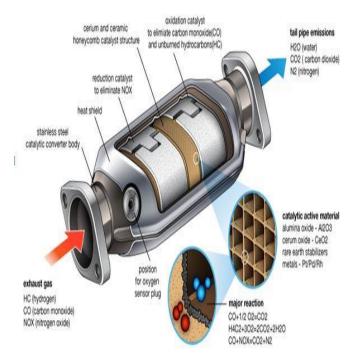


Figure 1 Construction of Catalytic Converter

During cold start of an IC engine, the temperature of an exhaust gas is less and catalytic converter at room temperature. So its conversion efficiency is nearly zero and goes on increasing as temperature increases[1].

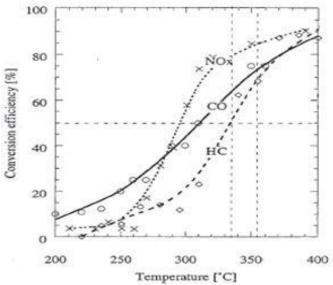


Figure 2 Conversion Efficiency vs Temperature Graph

As we see in the fig_____ the conversion efficiency of the catalytic converter mainly depends on the temperature of the catalytic converter or its substrate. During the cold start, temperature of catalytic converter should be high enough, so it can convert emission gases into CO_2 , H_2O and N_2 . Many techniques are available to obtain less emission & obtain fast light off temperature of catalytic converter during cold start of an IC engine using heat storage system to store & maintain temperature of catalytic converter, heating with electrical power, heating with an external combustion chamber, installing an auxiliary small-capacity catalytic converter, employing an adsorber between two catalysts with or without a secondary air source.

Literature review:

1.1999E.Reducing cold start emission from an IC engine using eutectic mixture of LiCl/KCl phase change material with catalytic converter.Catalytic Converter temperature maintained above "light off" temperature for 4hrs.Vasilie v et. al.system(HSS) fo pre heating of a IC engine of the bus. NaOH H2C phase change material having 64°C melting temperature has been used to sto 65KJ heat energy2.2008M.Designed & tested experimental heat storage (Na_2SO_4 10H_2O) system for pre- heating of an IC64% & 15% emission reduction in CO (carbon monoxide) & Also 17.4°C average8.1997G.C. Koltsa kis & (emission)Discuss review the exhaust gas the catalytic comparence	Sr No	Vear	Author	Work Done	Remarks				
2.2008M.Designed & tested experimental sample of thermal heat storage $64\% \& 15\%$ 	1	. 1999	Korin	start emission from an IC engine using eutectic mixture of LiCl/KCl phase change material with catalytic	temperature maintained above "light off" temperature for	7.	2000		material having 64 ⁰ C melting temperature has
9. 2013 Nichol Detailed review	2	. 2008		experimental sample of thermal heat storage (Na ₂ SO ₄ 10H ₂ O) system for pre-	emission reduction in CO (carbon monoxide) & HC(hydrocarbons). Also 17.4 ⁰ C			Koltsa kis & A.M. Stamat elos	65KJ heat energy. Discuss review on the exhaust gas (emission) treatment using the catalytic

				cold start	increase of an IC
				emission.	engine.
i.	3.	1994	Steven	Reduction of cold	Vacuum insulation
0			Burch	start emission by	with Phase Change
			et. al.	maintaining	Material maintains
				catalytic converter	Catalytic converter
				temperature using	temperature above
				Al eutectic alloy	350 [°] C temperature
				phase change	for 10hrs.
				material. Used	
				vacuum insulation to increase heat	
				retention time.	
	4.	2013	K.K.B	Use of latent heat	23% of %CO &
	т.	2015	okde	storage system	21% of HCppm
			&	(LHSS) for	reduction in cold
			A.V.	improving cold	start emission has
0			Wagh	start performance	been achieved.
			mare	of Catalytic	
				Converter.	
	5.	2014	Andre	Review on the	Study the different
of			W	problem, cause &	techniques to
of			Robert s et. al.	potential solution on internal	reduce cold start
rt,			s et. al.	combustion	increase engine emissions and
it				engine cold start	improve engine
ny				efficiency.	performance.
ist	6.	1997	P.M.G	Design, fabricated	Using the novel
of in			olben	& tested the novel	hydride
cal			et.al.	hydride cold start	temperature of
er,				heater to instantly	catalytic converter
er,				increase the	is increases from
out				temperature of	room temperature
				catalytic converter	to above light off
				during cold start of an IC engine.	temperature in 6-8 sec. It reduces
				of all IC elignic.	nearly 65% of non
					methane
					hydrocarbons
					during US Federal
					Test
					Procedure(FTP).
rter	7.	2000	L.L.	Used heat storage	As engine is turned
			Vasilie	system(HSS) for	off stored heat in
e			v et. al.	pre heating of an	the heat storage
				IC engine of the bus. NaOH H_2O	system(HSS) is rejected in 10min.
				phase change	& preheat the
				material having	engine upto 30° C
				64° C melting	with storage period
				temperature has	was 36hrs.
				been used to store	
on				65KJ heat energy.	
	8.	1997	G.C.	Discuss review on	
			Koltsa	the exhaust gas	
ns).			kis &	(emission)	
			A.M. Stamat	treatment using	
			elos	the catalytic converter.	
	9.	2013	Nichol	Detailed review	Gives various PCM
	<u> </u>	2015	110101	Domined ic view	

as Janko wski & P.McC	on the PCM used for vehicle component thermal buffering.	based applications in vehicle.
P.McC luskev	thermal buffering.	
luskey		

Techniques to reduction of emission during engine cold start:

As we know an emission from IC engine during the cold start is high, because the temperature of an IC engine is low. Because of that air fuel mixture in the cylinder is not burn completely causing more unburn HC(hydrocarbons) in exhaust gas. To avoid this extra emission many ways has been developed, like maintaining temperature of IC engine, use fast light off catalytic converter, change in the design parameters of an IC engine, fuel additives etc. Also there are many techniques available for maintaining temperature of the catalytic converter, use of the pre catalytic converter for fast light off, use of latent heat storage system to maintain temperature of catalytic converter etc. A. Roberts et.al. gives a brief review on the problem, causes & potential solutions to the cold start efficiency of IC engine[4].

In 1994 S.D.Burch et. al. design, fabricated & tested the catalytic converter with layer of the phase change material on the catalytic converter[3]. With use of 2.2kg of Al eutectic alloy temperature of catalytic converter maintained above its light off temperature for 10hrs. Also use of vacuum insulation reduces loss of heat to the surrounding. By use of 3.8kg phase change material (PCM) latent thermal energy storage system has been designed by E. Korin et. al.[1] Eutectic mixture of LiCl/KCl PCM was used to maintain temperature of catalytic converter above 335°C (highest light off temperature) for 4hrs. In fig. 3 the cross section of catalyst & PCM assembly is shown. As we see the catalyst has cut into four quarter parts & PCM has placed in-between them. It gives more interface area which helps to increase the heat transfer during charging & discharging cycle. Fig. 4 shows temperature vs. time graph of catalytic converter after engine was shut off.

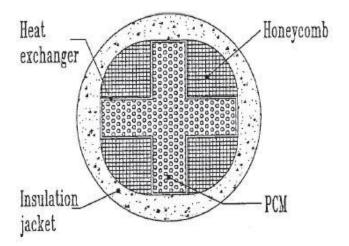


Figure 3 Cross section of PCM embedded catalytic converter

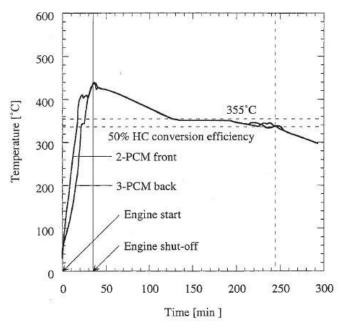


Figure 4 Temperature vs time graph

K.K.Bodake & A.V. Waghmare designed, fabricated & integrated latent heat storage system to maintain temperature of catalytic converter above surrounding temperature[5]. Paraffin wax as PCM was used to store the heat during vehicle in normal running condition. They able to obtain 23% & 21% reduction of %CO & HCppm in exhaust gas respectively.

M. Gumus design thermal energy storage system (TESS) to maintain temperature of an IC engine nearly at 19^{0} C. The heat loss from an engine cylinder block & cylinder block cover has stored in TESS[2]. The working fluid was water to transfer heat from engine to TESS. Because of pre heating of an engine, reduction of 64% & 15% in CO & HC achieved respectively. Fig. 5 shows %Vol. concentration of CO emission & temperature with respect to time. HC emission in ppm & temperature with respect to time is showed in fig. 6.

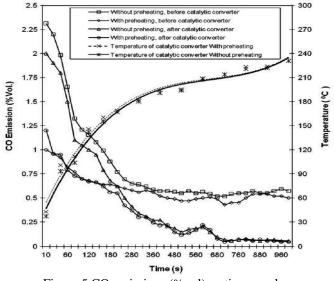
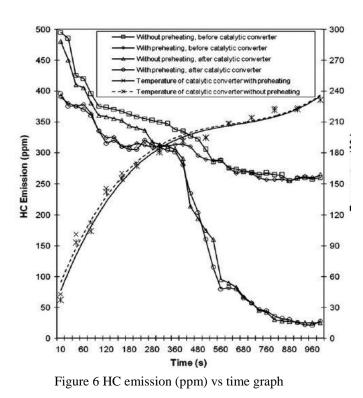



Figure 5 CO emissions (% vol) vs time graph

L.L. Vasiliev et. al. used latent heat storage module to pre heat IC engine[7]. NaOH H_2O (phase change temperature=64^oC)PCM has used to store 14MJ heat energy. This latent heat storage module heats an engine up to 30^oC in 10 min. during discharge cycle with 36 hrs. heat storage period. Fig 7 shows the temperature of an engine at various points with respect to time during heat storage module discharge cycle.

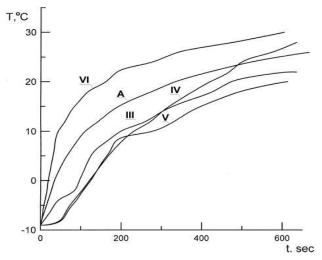


Figure 7 Temperature Of An Engine Vs Time Graph

P.M. Golben et. al. [6] design fabricated & tested novel hydride cold start heater to increase temperature of an exhaust gases. It increases temperature of catalytic converter above light off temperature within 6-8 sec. It helps to reduce emission nearly by 65% during US Federal Test Procedure (FTP). Fig. 8 shows temperature of air downstream with respect to time.

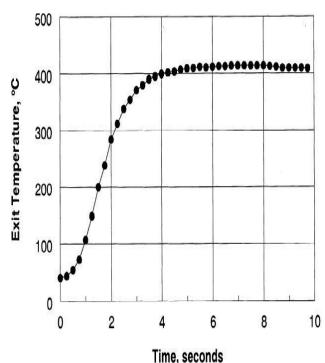


Figure 8 Exit Temperature vs time graph

Conclusion:

Under the normal operating conditions, catalytic converters appear to be the most effective means of reducing emissions from internal combustion (IC) engines. Catalytic converter work more efficiently when its temperature is above the 'light off' temperature. During the cold start of an engine catalytic converter conversion efficiency is nearly zero or very less. About 80% of total emissions are emitted during the cold start period. There are many techniques available to reduce emissions during cold start period of an IC engine. But some methods required external energy source. So use of the latent heat storage system is one of the best methods to reduce emissions from IC engine. There are many researchers designed, analyzed & tested latent thermal energy storage system (LTESS) to reduce emissions during cold start of an IC engine.

Without disturb to an engine we can reduces emission of cold start period by maintaining the temperature of catalytic converter. Using PCM as latent heat storage, we can store more heat than sensible heat storage. It is very efficient to design latent heat thermal storage system to control & maintain temperature of catalytic converter during engine off condition. It will helps to reduce emissions during next cold start period.

References:

 E. Korin, R. Reshef, D. Tshernichovesky & E. Sher; "Reducing Cold-Start Emission From Internal Combustion Engines By Means Of A Catalytic Converter Embedded In A Phase-Change Material", Proc International Mechanical Engineering Vol 213, 1999. pg. no. 575-583.

- M. Gumus, "Reducing Cold-Start Emission From Internal Combustion Engines By Means Of Thermal Energy Storage System" *Applied Thermal Engineering 29(2009)* pg. no. 652-660.
- S. D. Burch, T. F. Potter, M. A. Keyser, D. K. Benson, "Thermal Analysis And Testing Of A Vacuum-Insulated Catalytic Converter" *National Renewable Energy Laborator.*
- A. Roberts, R. Brooks and P. Shipway "Internal Combustion Engine Cold-Start Efficiency: A Review Of The Problem, Causes And Potential Solutions". *Energy Conversion and Management* 82;(2014) pg. no.327-350.
- 5) K. K. Bokde, A. V. Waghmare; "Cold Start Performance Enhancement Of Motorcycle Catalytic Convertor By Latent Heat Storage System" *International Journal of Innovative Research in Science, Engineering and Technology, Vol. 2, Issue 2; February 2013. pg. no.372-377.*
- P.M. Golben, D. DaCosta & G. Sandrock, "Hydride based cold start heater for automobile catalyst" *Journal of Alloys & Compounds 253-254; (1997) pg no. 686-688.*
- L.L. Vasiliev, V.S. Burak, A.G. Kulakov, D.A. Mishkinis & P.V. Bohan, "Latent heat storage modules for preheating internal combustion engines: application to a bus petrol engine" *Applied Thermal Engineering 20* (2000) pg. no. 913-923.
- 8) G.C. Koltsakis and A. M. Stamatelos, "Catalytic Automotive Exhaust Aftertreatment" *Prog. Energy Combust. Sci. Vol. 23 (1997) pg. no. 1-39.*
- Nicholas R. Jankowski, F. Patrick McCluskey, "A review of phase change materials for vehicle component thermal buffering" *Applied Energy 113 (2014) pg. no. 1525–* 1561.